Soft labeling by distilling anatomical knowledge for improved ms lesion segmentation

Eytan Kats, Jacob Goldberger, Hayit Greenspan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

26 Scopus citations

Abstract

This paper explores the use of a soft ground-truth mask ('soft mask') to train a Fully Convolutional Neural Network (FCNN) for segmentation of Multiple Sclerosis (MS) lesions. Detection and segmentation of MS lesions is a complex task largely due to the extreme unbalanced data, with very small number of lesion pixels that can be used for training. Utilizing the anatomical knowledge that the lesion surrounding pixels may also include some lesion level information, we suggest to increase the data set of the lesion class with neighboring pixel data -with a reduced confidence weight. A soft mask is constructed by morphological dilation of the binary segmentation mask provided by a given expert, where expert-marked voxels receive label 1 and voxels of the dilated region are assigned a soft label. In the methodology proposed, the FCNN is trained using the soft mask. On the ISBI 2015 challenge dataset, this is shown to provide a better precision-recall tradeoff and to achieve a higher average Dice similarity coefficient. We also show that by using this soft mask scheme we can improve the network segmentation performance when compared to a second independent expert.

Original languageEnglish
Title of host publicationISBI 2019 - 2019 IEEE International Symposium on Biomedical Imaging
PublisherIEEE Computer Society
Pages1563-1566
Number of pages4
ISBN (Electronic)9781538636411
DOIs
StatePublished - Apr 2019
Event16th IEEE International Symposium on Biomedical Imaging, ISBI 2019 - Venice, Italy
Duration: 8 Apr 201911 Apr 2019

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2019-April
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference16th IEEE International Symposium on Biomedical Imaging, ISBI 2019
Country/TerritoryItaly
CityVenice
Period8/04/1911/04/19

Keywords

  • Deep learning
  • Multiple sclerosis
  • Segmentation
  • Soft labels

Fingerprint

Dive into the research topics of 'Soft labeling by distilling anatomical knowledge for improved ms lesion segmentation'. Together they form a unique fingerprint.

Cite this