TY - GEN
T1 - SMBOP
T2 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021
AU - Rubin, Ohad
AU - Berant, Jonathan
N1 - Publisher Copyright:
© 2021 Association for Computational Linguistics.
PY - 2021
Y1 - 2021
N2 - The de-facto standard decoding method for semantic parsing in recent years has been to autoregressively decode the abstract syntax tree of the target program using a top-down depth-first traversal. In this work, we propose an alternative approach: a Semi-autoregressive Bottom-up Parser (SMBOP) that constructs at decoding step t the top-K sub-trees of height ≤ t. Our parser enjoys several benefits compared to top-down autoregressive parsing. From an efficiency perspective, bottom-up parsing allows to decode all sub-trees of a certain height in parallel, leading to logarithmic runtime complexity rather than linear. From a modeling perspective, a bottom-up parser learns representations for meaningful semantic sub-programs at each step, rather than for semantically-vacuous partial trees. We apply SMBOP on SPIDER, a challenging zero-shot semantic parsing benchmark, and show that SMBOP leads to a 2.2x speed-up in decoding time and a ∼5x speed-up in training time, compared to a semantic parser that uses autoregressive decoding. SMBOP obtains 71.1 denotation accuracy on SPIDER, establishing a new state-of-the-art, and 69.5 exact match, comparable to the 69.6 exact match of the autoregressive RAT-SQL+GRAPPA.
AB - The de-facto standard decoding method for semantic parsing in recent years has been to autoregressively decode the abstract syntax tree of the target program using a top-down depth-first traversal. In this work, we propose an alternative approach: a Semi-autoregressive Bottom-up Parser (SMBOP) that constructs at decoding step t the top-K sub-trees of height ≤ t. Our parser enjoys several benefits compared to top-down autoregressive parsing. From an efficiency perspective, bottom-up parsing allows to decode all sub-trees of a certain height in parallel, leading to logarithmic runtime complexity rather than linear. From a modeling perspective, a bottom-up parser learns representations for meaningful semantic sub-programs at each step, rather than for semantically-vacuous partial trees. We apply SMBOP on SPIDER, a challenging zero-shot semantic parsing benchmark, and show that SMBOP leads to a 2.2x speed-up in decoding time and a ∼5x speed-up in training time, compared to a semantic parser that uses autoregressive decoding. SMBOP obtains 71.1 denotation accuracy on SPIDER, establishing a new state-of-the-art, and 69.5 exact match, comparable to the 69.6 exact match of the autoregressive RAT-SQL+GRAPPA.
UR - http://www.scopus.com/inward/record.url?scp=85137722474&partnerID=8YFLogxK
U2 - 10.18653/v1/2021.naacl-main.29
DO - 10.18653/v1/2021.naacl-main.29
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85137722474
T3 - NAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference
SP - 311
EP - 324
BT - NAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics
PB - Association for Computational Linguistics (ACL)
Y2 - 6 June 2021 through 11 June 2021
ER -