SMBOP: Semi-autoregressive Bottom-up Semantic Parsing

Ohad Rubin, Jonathan Berant

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

72 Scopus citations

Abstract

The de-facto standard decoding method for semantic parsing in recent years has been to autoregressively decode the abstract syntax tree of the target program using a top-down depth-first traversal. In this work, we propose an alternative approach: a Semi-autoregressive Bottom-up Parser (SMBOP) that constructs at decoding step t the top-K sub-trees of height ≤ t. Our parser enjoys several benefits compared to top-down autoregressive parsing. From an efficiency perspective, bottom-up parsing allows to decode all sub-trees of a certain height in parallel, leading to logarithmic runtime complexity rather than linear. From a modeling perspective, a bottom-up parser learns representations for meaningful semantic sub-programs at each step, rather than for semantically-vacuous partial trees. We apply SMBOP on SPIDER, a challenging zero-shot semantic parsing benchmark, and show that SMBOP leads to a 2.2x speed-up in decoding time and a ∼5x speed-up in training time, compared to a semantic parser that uses autoregressive decoding. SMBOP obtains 71.1 denotation accuracy on SPIDER, establishing a new state-of-the-art, and 69.5 exact match, comparable to the 69.6 exact match of the autoregressive RAT-SQL+GRAPPA.

Original languageEnglish
Title of host publicationNAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics
Subtitle of host publicationHuman Language Technologies, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages311-324
Number of pages14
ISBN (Electronic)9781954085466
DOIs
StatePublished - 2021
Event2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021 - Virtual, Online
Duration: 6 Jun 202111 Jun 2021

Publication series

NameNAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference

Conference

Conference2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021
CityVirtual, Online
Period6/06/2111/06/21

Funding

FundersFunder number
European Union Horizons 2020 research and innovation programmeDELPHI 802800
Yandex Initiative for Machine Learn-ing
Yandex Initiative for Machine Learning
Horizon 2020 Framework Programme802800
European Research Council

    Fingerprint

    Dive into the research topics of 'SMBOP: Semi-autoregressive Bottom-up Semantic Parsing'. Together they form a unique fingerprint.

    Cite this