@article{4d275b928bb340f4a56cfdcab2ea2d60,

title = "Singular asymptotic expansion of the elastic solution along an edge around which material properties depend on the angular coordinate",

abstract = "The solution to the elasticity problem in three-dimensional polyhedral domains in the vicinity of an edge around which the material properties depend on the angular angle is addressed. This asymptotic solution involves a family of eigenpairs and their shadows which are being computed by means of p-finite element methods. In particular the examples we give explicitly provide the asymptotic solution for cracks and V-notch edges and explore the eigenvalues as a function of the change in material properties in the angular direction. We demonstrate that the singular exponents may change considerably by changing the material properties variation in the angular direction. These eigenpairs are necessary to allow the extraction of the edge stress intensity functions.",

keywords = "Edge stress intensity functions, composite materials, elasticity, fracture mechanics, high order finite elements",

author = "Netta Omer and Zohar Yosibash",

note = "Publisher Copyright: {\textcopyright} 2016, {\textcopyright} The Author(s) 2016.",

year = "2017",

month = dec,

day = "1",

doi = "10.1177/1081286516666133",

language = "אנגלית",

volume = "22",

pages = "2288--2308",

journal = "Mathematics and Mechanics of Solids",

issn = "1081-2865",

publisher = "SAGE Publications Inc.",

number = "12",

}