TY - JOUR
T1 - Single-step electrical field strength screening to determine electroporation induced transmembrane transport parameters
AU - Blumrosen, Gadi
AU - Abazari, Alireza
AU - Golberg, Alexander
AU - Yarmush, Martin L.
AU - Toner, Mehmet
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2016/9/1
Y1 - 2016/9/1
N2 - The design of effective electroporation protocols for molecular delivery applications requires the determination of transport parameters including diffusion coefficient, membrane resealing, and critical electric field strength for electroporation. The use of existing technologies to determine these parameters is time-consuming and labor-intensive, and often results in large inconsistencies in parameter estimation due to variations in the protocols and setups. In this work, we suggest using a set of concentric electrodes to screen a full range of electric field strengths in a single test to determine the electroporation-induced transmembrane transport parameters. Using Calcein as a fluorescent probe, we developed analytical methodology to determine the transport parameters based on the electroporation-induced pattern of fluorescence loss from cells. A monolayer of normal human dermal fibroblast (NHDF) cells were pre-loaded with Calcein and electroporated with an applied voltage of 750 V with 10 and 50 square pulses with 50 μs duration. Using our analytical model, the critical electric field strength for electroporation was found for the 10 and 50 pulses experiments. An inverse correlation between the field strength and the molecular transport time decay constant, and a direct correlation between field strength and the membrane permeability were observed. The results of this work can simplify the development of electroporation-assisted technologies for research and therapies.
AB - The design of effective electroporation protocols for molecular delivery applications requires the determination of transport parameters including diffusion coefficient, membrane resealing, and critical electric field strength for electroporation. The use of existing technologies to determine these parameters is time-consuming and labor-intensive, and often results in large inconsistencies in parameter estimation due to variations in the protocols and setups. In this work, we suggest using a set of concentric electrodes to screen a full range of electric field strengths in a single test to determine the electroporation-induced transmembrane transport parameters. Using Calcein as a fluorescent probe, we developed analytical methodology to determine the transport parameters based on the electroporation-induced pattern of fluorescence loss from cells. A monolayer of normal human dermal fibroblast (NHDF) cells were pre-loaded with Calcein and electroporated with an applied voltage of 750 V with 10 and 50 square pulses with 50 μs duration. Using our analytical model, the critical electric field strength for electroporation was found for the 10 and 50 pulses experiments. An inverse correlation between the field strength and the molecular transport time decay constant, and a direct correlation between field strength and the membrane permeability were observed. The results of this work can simplify the development of electroporation-assisted technologies for research and therapies.
KW - Cell membrane permeability
KW - Concentric electrode system
KW - Electroporation
KW - High-throughput experiments
KW - Transport parameters
UR - http://www.scopus.com/inward/record.url?scp=84974623482&partnerID=8YFLogxK
U2 - 10.1016/j.bbamem.2016.05.022
DO - 10.1016/j.bbamem.2016.05.022
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84974623482
SN - 0005-2736
VL - 1858
SP - 2041
EP - 2049
JO - Biochimica et Biophysica Acta - Biomembranes
JF - Biochimica et Biophysica Acta - Biomembranes
IS - 9
ER -