Single-Shot Freestyle Dance Reenactment

Oran Gafni, Oron Ashual, Lior Wolf

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

The task of motion transfer between a source dancer and a target person is a special case of the pose transfer problem, in which the target person changes their pose in accordance with the motions of the dancer. In this work, we propose a novel method that can reanimate a single image by arbitrary video sequences, unseen during training. The method combines three networks: (i) a segmentation-mapping network, (ii) a realistic frame-rendering network, and (iii) a face refinement network. By separating this task into three stages, we are able to attain a novel sequence of realistic frames, capturing natural motion and appearance. Our method obtains significantly better visual quality than previous methods and is able to animate diverse body types and appearances, which are captured in challenging poses.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PublisherIEEE Computer Society
Pages882-891
Number of pages10
ISBN (Electronic)9781665445092
DOIs
StatePublished - 2021
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States
Duration: 19 Jun 202125 Jun 2021

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Country/TerritoryUnited States
CityVirtual, Online
Period19/06/2125/06/21

Fingerprint

Dive into the research topics of 'Single-Shot Freestyle Dance Reenactment'. Together they form a unique fingerprint.

Cite this