Simple learning algorithms for decision trees and multivariate polynomials

Nader H. Bshouty*, Yishay Mansour

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

In this paper we develop a new approach for learning decision trees and multivariate polynomials via interpolation of multivariate polynomials. This new approach yields simple learning algorithms for multivariate polynomials and decision trees over finite fields under any constant bounded product distribution. The output hypothesis is a (single) multivariate polynomial that is an ε-approximation of the target under any constant bounded product distribution. The new approach demonstrates the learnability of many classes under any constant bounded product distribution and using membership queries, such as j-disjoint disjunctive normal forms (DNFs) and multivariate polynomials with bounded degree over any field. The technique shows how to interpolate multivariate polynomials with bounded term size from membership queries only. This, in particular, gives a learning algorithm for an O(log n)-depth decision tree from membership queries only and a new learning algorithm of any multivariate polynomial over sufficiently large fields from membership queries only. We show that our results for learning from membership queries only are the best possible.

Original languageEnglish
Pages (from-to)1909-1925
Number of pages17
JournalSIAM Journal on Computing
Volume31
Issue number6
DOIs
StatePublished - Sep 2002

Keywords

  • Decision tree learning
  • Learning interpolation
  • Multivariate polynomial

Fingerprint

Dive into the research topics of 'Simple learning algorithms for decision trees and multivariate polynomials'. Together they form a unique fingerprint.

Cite this