SimMeme: A search engine for internet memes

Tova Milo, Amit Somech, Brit Youngmann

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations


As more and more social network users interact through Internet Memes, an emerging popular type of captioned images, there is a growing need for users to quickly retrieve the right Meme for a given situation. As opposed conventional image search, visually similar Memes may reflect different concepts. Intent is sometimes captured by user annotations (e.g., tags), but these are often incomplete and ambiguous. Thus, a deeper analysis of the relations among Memes is required for an accurate, custom search. To address this problem, we present SimMeme, a Meme-dedicated search engine. SimMeme uses a generic graph-based data model that aligns various types of information about the Memes with a semantic ontology. A novel similarity measure that effectively considers all incorporated data is employed and serves as the foundation of our system. Our experimental results achieve using common evaluation metrics and crowd feedback, over a large repository of real-life annotated Memes, show that in the task of Meme retrieval, SimMeme outperforms state-of-the-art solutions for image retrieval.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE 35th International Conference on Data Engineering, ICDE 2019
PublisherIEEE Computer Society
Number of pages12
ISBN (Electronic)9781538674741
StatePublished - Apr 2019
Event35th IEEE International Conference on Data Engineering, ICDE 2019 - Macau, China
Duration: 8 Apr 201911 Apr 2019

Publication series

NameProceedings - International Conference on Data Engineering
ISSN (Print)1084-4627


Conference35th IEEE International Conference on Data Engineering, ICDE 2019


  • Information network
  • Internet memes
  • Semantics
  • Similarity


Dive into the research topics of 'SimMeme: A search engine for internet memes'. Together they form a unique fingerprint.

Cite this