Shallow Transits - Deep Learning. I. Feasibility Study of Deep Learning to Detect Periodic Transits of Exoplanets

Research output: Contribution to journalArticlepeer-review


Transits of habitable planets around solar-like stars are expected to be shallow, and to have long periods, which means low information content. The current bottleneck in the detection of such transits is caused in large part by the presence of red (correlated) noise in the light curves obtained from the dedicated space telescopes. Based on the groundbreaking results deep learning achieves in many signal and image processing applications, we propose to use deep neural networks to solve this problem. We present a feasibility study, in which we applied a convolutional neural network on a simulated training set. The training set comprised light curves received from a hypothetical high-cadence space-based telescope. We simulated the red noise by using Gaussian Processes with a wide variety of hyper-parameters. We then tested the network on a completely different test set simulated in the same way. Our study proves that very difficult cases can indeed be detected. Furthermore, we show how detection trends can be studied and detection biases quantified. We have also checked the robustness of the neural-network performance against practical artifacts such as outliers and discontinuities, which are known to affect space-based high-cadence light curves. Future work will allow us to use the neural networks to characterize the transit model and identify individual transits. This new approach will certainly be an indispensable tool for the detection of habitable planets in the future planet-detection space missions such as PLATO.

Original languageEnglish
Article number147
JournalAstronomical Journal
Issue number4
StatePublished - Apr 2018


  • methods: data analysis
  • planetary systems
  • planets and satellites: detection
  • planets and satellites:terrestrial planets
  • stars: activity


Dive into the research topics of 'Shallow Transits - Deep Learning. I. Feasibility Study of Deep Learning to Detect Periodic Transits of Exoplanets'. Together they form a unique fingerprint.

Cite this