Separation control at flight reynolds numbers: Lessons learned and future directions

Avi Seifert, La Tunia G. Pack

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Active separation control, using periodic excitation, was studied experimentally at high Reynolds numbers. The effects of compressibility, mild sweep, location of excitation slot and steady momentum transfer on the efficacy of the method were identified. Tests conducted at chord Reynolds numbers as high as 40x106 demonstrated that active control using oscillatory flow excitation can effectively delay flow separation from, and reattach separated How to aerodynamic surfaces at flight conditions. The effective frequencies generate one to four vortices over the controlled region at all times, regardless of the Reynolds number. The vortices are initially amplified by the separated shear-layer, and after initiating reattachment, the strength of the vortices decay as they are convecled downstream. Large amplitude, low frequency vortices break down to smaller ones upon introduction at the excitation slot. The effects of steady mass transfer were compared to those of periodic excitation. It was found that steady blowing is significantly inferior to periodic excitation in terms of performance benefits and that the response to steady blowing is abrupt, and therefore undesirable from a control point of view. Steady suction and periodic excitation are comparable in effectiveness and both exhibit a gradual response to changes in the magnitude of the control input. The combination of weak steady suction and periodic excitation is extremely effective while the addition of steady blowing could be detrimental. Compressibility effects are weak as long as separation is not caused by a shock-wave/boundary-layer interaction. The undesirable effects of the shock-induced separation could be alleviated by the introduction of periodic excitation upstream of the shock wave, inside the region of supersonic tlow. The effects of mild sweep were also studied and periodic excitation was found to be very effective in reattaching three-dimensional separated How. Scaling laws that correlate 2D and 3D controlled Hows were tested and verified. Several performance benefits could be gained by applying the method to existing configurations, but it is expected that the full potential of the method can only be realized through the design of new configurations. A comprehensive, fully turbulent, database was generated in order to guide the development, and enable validation, of candidate unsteady CFD design tools.

Original languageEnglish
Title of host publicationFluids 2000 Conference and Exhibit
PublisherAmerican Institute of Aeronautics and Astronautics Inc. (AIAA)
DOIs
StatePublished - 2000
EventFluids 2000 Conference and Exhibit - Denver, CO, United States
Duration: 19 Jun 200022 Jun 2000

Conference

ConferenceFluids 2000 Conference and Exhibit
Country/TerritoryUnited States
CityDenver, CO
Period19/06/0022/06/00

Fingerprint

Dive into the research topics of 'Separation control at flight reynolds numbers: Lessons learned and future directions'. Together they form a unique fingerprint.

Cite this