TY - JOUR
T1 - Sensory modulation dysfunction is associated with Complex Regional Pain Syndrome
AU - Bar-Shalita, Tami
AU - Livshitz, Anatoly
AU - Levin-Meltz, Yulia
AU - Rand, Debbie
AU - Deutsch, Lisa
AU - Vatine, Jean Jacques
N1 - Publisher Copyright:
© 2018 Bar-Shalita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/8
Y1 - 2018/8
N2 - Objective Complex Regional Pain Syndrome (CRPS), a chronic pain condition, develops mainly after limb trauma and severely inhibits function. While early diagnosis is essential, factors for CRPS onset are elusive. Therefore, identifying those at risk is crucial. Sensory modulation dysfunction (SMD), affects the capacity to regulate responses to sensory input in a graded and adaptive manner and was found associated with hyperalgesia in otherwise healthy individuals, suggestive of altered pain processing. Aim To test SMD as a potential risk factor for CRPS. Methods In this cross-sectional study, forty-four individuals with CRPS (29.9±11 years, 27 men) and 204 healthy controls (27.4±3.7 years, 105 men) completed the Sensory Responsiveness Questionnaire-Intensity Scale (SRQ-IS). A physician conducted the CRPS Severity Score (CSS), testing individuals with CRPS. Results Thirty-four percent of the individuals with CRPS and twelve percent of the healthy individuals were identified to have SMD (χ2 (1) = 11.95; p<0.001). Logistic regression modeling revealed that the risk of CRPS is 2.68 and 8.21 times higher in individuals with sensory over- and sensory under-responsiveness, respectively, compared to non-SMD individuals (p = 0.03 and p = 0.01, respectively). Conclusions SMD, particularly sensory under-responsiveness, might serve as a potential risk factor for CRPS and therefore screening for SMD is recommended. This study provides the risk index probability clinical tool a simple evaluation to be applied by clinicians in order to identify those at risk for CRPS immediately after injury. Further research is needed.
AB - Objective Complex Regional Pain Syndrome (CRPS), a chronic pain condition, develops mainly after limb trauma and severely inhibits function. While early diagnosis is essential, factors for CRPS onset are elusive. Therefore, identifying those at risk is crucial. Sensory modulation dysfunction (SMD), affects the capacity to regulate responses to sensory input in a graded and adaptive manner and was found associated with hyperalgesia in otherwise healthy individuals, suggestive of altered pain processing. Aim To test SMD as a potential risk factor for CRPS. Methods In this cross-sectional study, forty-four individuals with CRPS (29.9±11 years, 27 men) and 204 healthy controls (27.4±3.7 years, 105 men) completed the Sensory Responsiveness Questionnaire-Intensity Scale (SRQ-IS). A physician conducted the CRPS Severity Score (CSS), testing individuals with CRPS. Results Thirty-four percent of the individuals with CRPS and twelve percent of the healthy individuals were identified to have SMD (χ2 (1) = 11.95; p<0.001). Logistic regression modeling revealed that the risk of CRPS is 2.68 and 8.21 times higher in individuals with sensory over- and sensory under-responsiveness, respectively, compared to non-SMD individuals (p = 0.03 and p = 0.01, respectively). Conclusions SMD, particularly sensory under-responsiveness, might serve as a potential risk factor for CRPS and therefore screening for SMD is recommended. This study provides the risk index probability clinical tool a simple evaluation to be applied by clinicians in order to identify those at risk for CRPS immediately after injury. Further research is needed.
UR - http://www.scopus.com/inward/record.url?scp=85052314008&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0201354
DO - 10.1371/journal.pone.0201354
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85052314008
SN - 1932-6203
VL - 13
JO - PLoS ONE
JF - PLoS ONE
IS - 8
M1 - e0201354
ER -