Self-Assembly of Tunable Intrinsically Disordered Peptide Amphiphiles

Tamara Ehm, Hila Shinar, Guy Jacoby, Sagi Meir, Gil Koren, Merav Segal Asher, Joanna Korpanty, Matthew P. Thompson, Nathan C. Gianneschi, Michael M. Kozlov, Salome Azoulay-Ginsburg, Roey J. Amir*, Joachim O. Rädler*, Roy Beck*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Intrinsically disordered peptide amphiphiles (IDPAs) present a novel class of synthetic conjugates that consist of short hydrophilic polypeptides anchored to hydrocarbon chains. These hybrid polymer-lipid block constructs spontaneously self-assemble into dispersed nanoscopic aggregates or ordered mesophases in aqueous solution due to hydrophobic interactions. Yet, the possible sequence variations and their influence on the self-assembly structures are vast and have hardly been explored. Here, we measure the nanoscopic self-assembled structures of four IDPA systems that differ by their amino acid sequence. We show that permutations in the charge pattern along the sequence remarkably alter the headgroup conformation and consequently alter the pH-triggered phase transitions between spherical, cylindrical micelles and hexagonal condensed phases. We demonstrate that even a single amino acid mutation is sufficient to tune structural transitions in the condensed IDPA mesophases, while peptide conformations remain unfolded and disordered. Furthermore, alteration of the peptide sequence can render IDPAs to become susceptible to enzymatic cleavage and induce enzymatically activated phase transitions. These results hold great potential for embedding multiple functionalities into lipid nanoparticle delivery systems by incorporating IDPAs with the desired properties.

Original languageEnglish
Pages (from-to)98-108
Number of pages11
JournalBiomacromolecules
Volume24
Issue number1
DOIs
StatePublished - 9 Jan 2023

Fingerprint

Dive into the research topics of 'Self-Assembly of Tunable Intrinsically Disordered Peptide Amphiphiles'. Together they form a unique fingerprint.

Cite this