Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity

Lee Schnaider, Sayanti Brahmachari, Nathan W. Schmidt, Bruk Mensa, Shira Shaham-Niv, Darya Bychenko, Lihi Adler-Abramovich, Linda J.W. Shimon, Sofiya Kolusheva, William F. Degrado, Ehud Gazit

Research output: Contribution to journalArticlepeer-review


Peptide-based supramolecular assemblies are a promising class of nanomaterials with important biomedical applications, specifically in drug delivery and tissue regeneration. However, the intrinsic antibacterial capabilities of these assemblies have been largely overlooked. The recent identification of common characteristics shared by antibacterial and self-assembling peptides provides a paradigm shift towards development of antibacterial agents. Here we present the antibacterial activity of self-assembled diphenylalanine, which emerges as the minimal model for antibacterial supramolecular polymers. The diphenylalanine nano-assemblies completely inhibit bacterial growth, trigger upregulation of stress-response regulons, induce substantial disruption to bacterial morphology, and cause membrane permeation and depolarization. We demonstrate the specificity of these membrane interactions and the development of antibacterial materials by integration of the peptide assemblies into tissue scaffolds. This study provides important insights into the significance of the interplay between self-assembly and antimicrobial activity and establishes innovative design principles toward the development of antimicrobial agents and materials.

Original languageEnglish
Article number1365
JournalNature Communications
Issue number1
StatePublished - 1 Dec 2017


Dive into the research topics of 'Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity'. Together they form a unique fingerprint.

Cite this