TY - JOUR
T1 - Seasonal thermogenic acclimation of diurnally and nocturnally active desert spiny mice
AU - Kronfeld-Schor, Noga
AU - Haim, Abraham
AU - Dayan, Tamar
AU - Zisapel, Nava
AU - Klingenspor, Martin
AU - Heldmaier, Gerhard
PY - 2000
Y1 - 2000
N2 - Diurnally active golden spiny mice (Acomys russatus) and nocturnal common spiny mice (Acomys cahirinus) coexist in hot rocky deserts of Israel. Diurnal and nocturnal activities expose these species to different climatic conditions. Nonshivering thermogenesis (NST) capacity of individuals of both species immediately upon removal from the field exhibited seasonal changes, with no significant interspecific difference. Colony-reared mice of either species transferred in the laboratory from long to short photoperiod increased NST capacity, though to a lesser extent than observed in the seasonal acclimatization. The underlying biochemical mechanisms of short photoperiod acclimation differed between the species. In both Cytochrome-c oxidase (Cox) activity was higher in short as compared to long photoperiod. In short-photoperiod-acclimated A. cahirinus uncoupling protein (UCP) content in brown adipose tissue (BAT) was significantly higher than in long photoperiod, while in A. russatus there was no significant change. In A. russatus there was a significant increase in lipoprotein lipase (LPL) activity in BAT in short-photoperiod-acclimated individuals, while in A. cahirinus LPL activity was high under both acclimations. The low LPL activity in brown adipose tissue of desert-adapted A. russatus may facilitate lipid uptake in white adipose tissue, an advantage in desert conditions where food is scarce and irregularly distributed in space and time.
AB - Diurnally active golden spiny mice (Acomys russatus) and nocturnal common spiny mice (Acomys cahirinus) coexist in hot rocky deserts of Israel. Diurnal and nocturnal activities expose these species to different climatic conditions. Nonshivering thermogenesis (NST) capacity of individuals of both species immediately upon removal from the field exhibited seasonal changes, with no significant interspecific difference. Colony-reared mice of either species transferred in the laboratory from long to short photoperiod increased NST capacity, though to a lesser extent than observed in the seasonal acclimatization. The underlying biochemical mechanisms of short photoperiod acclimation differed between the species. In both Cytochrome-c oxidase (Cox) activity was higher in short as compared to long photoperiod. In short-photoperiod-acclimated A. cahirinus uncoupling protein (UCP) content in brown adipose tissue (BAT) was significantly higher than in long photoperiod, while in A. russatus there was no significant change. In A. russatus there was a significant increase in lipoprotein lipase (LPL) activity in BAT in short-photoperiod-acclimated individuals, while in A. cahirinus LPL activity was high under both acclimations. The low LPL activity in brown adipose tissue of desert-adapted A. russatus may facilitate lipid uptake in white adipose tissue, an advantage in desert conditions where food is scarce and irregularly distributed in space and time.
UR - http://www.scopus.com/inward/record.url?scp=0034062422&partnerID=8YFLogxK
U2 - 10.1086/316718
DO - 10.1086/316718
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0034062422
SN - 1522-2152
VL - 73
SP - 37
EP - 44
JO - Physiological and Biochemical Zoology
JF - Physiological and Biochemical Zoology
IS - 1
ER -