TY - JOUR
T1 - Seasonal dynamics of recurrent epidemics
AU - Stone, Lewi
AU - Olinky, Ronen
AU - Huppert, Amit
N1 - Funding Information:
Acknowledgements We are grateful for the support of the James S. McDonnell Foundation. A.H. was partly supported by the Porter School of Environmental Studies at Tel Aviv University.
PY - 2007/3/29
Y1 - 2007/3/29
N2 - Seasonality is a driving force that has a major effect on the spatio-temporal dynamics of natural systems and their populations. This is especially true for the transmission of common infectious diseases (such as influenza, measles, chickenpox and pertussis), and is of great relevance for host-parasite relationships in general. Here we gain further insights into the nonlinear dynamics of recurrent diseases through the analysis of the classical seasonally forced SIR (susceptible, infectious or recovered) epidemic model. Our analysis differs from other modelling studies in that the focus is more on post-epidemic dynamics than the outbreak itself. Despite the mathematical intractability of the forced SIR model, we identify a new threshold effect and give clear analytical conditions for predicting the occurrence of either a future epidemic outbreak, or a 'skip' - a year in which an epidemic fails to initiate. The threshold is determined by the population's susceptibility measured after the last outbreak and the rate at which new susceptible individuals are recruited into the population. Moreover, the time of occurrence (that is, the phase) of an outbreak proves to be a useful parameter that carries important epidemiological information. In forced systems, seasonal changes can prevent late-peaking diseases (that is, those having high phase) from spreading widely, thereby increasing population susceptibility, and controlling the triggering and intensity of future epidemics. These principles yield forecasting tools that should have relevance for the study of newly emerging and re-emerging diseases controlled by seasonal vectors.
AB - Seasonality is a driving force that has a major effect on the spatio-temporal dynamics of natural systems and their populations. This is especially true for the transmission of common infectious diseases (such as influenza, measles, chickenpox and pertussis), and is of great relevance for host-parasite relationships in general. Here we gain further insights into the nonlinear dynamics of recurrent diseases through the analysis of the classical seasonally forced SIR (susceptible, infectious or recovered) epidemic model. Our analysis differs from other modelling studies in that the focus is more on post-epidemic dynamics than the outbreak itself. Despite the mathematical intractability of the forced SIR model, we identify a new threshold effect and give clear analytical conditions for predicting the occurrence of either a future epidemic outbreak, or a 'skip' - a year in which an epidemic fails to initiate. The threshold is determined by the population's susceptibility measured after the last outbreak and the rate at which new susceptible individuals are recruited into the population. Moreover, the time of occurrence (that is, the phase) of an outbreak proves to be a useful parameter that carries important epidemiological information. In forced systems, seasonal changes can prevent late-peaking diseases (that is, those having high phase) from spreading widely, thereby increasing population susceptibility, and controlling the triggering and intensity of future epidemics. These principles yield forecasting tools that should have relevance for the study of newly emerging and re-emerging diseases controlled by seasonal vectors.
UR - http://www.scopus.com/inward/record.url?scp=34047120681&partnerID=8YFLogxK
U2 - 10.1038/nature05638
DO - 10.1038/nature05638
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:34047120681
SN - 0028-0836
VL - 446
SP - 533
EP - 536
JO - Nature
JF - Nature
IS - 7135
ER -