Abstract
We propose to modify the common training protocols of optical flow, leading to sizable accuracy improvements without adding to the computational complexity of the training process. The improvement is based on observing the bias in sampling challenging data that exists in the current training protocol, and improving the sampling process. In addition, we find that both regularization and augmentation should decrease during the training protocol. Using an existing low parameters architecture, the method is ranked first on the MPI Sintel benchmark among all other methods, improving the best two frames method accuracy by more than 10%. The method also surpasses all similar architecture variants by more than 12% and 19.7% on the KITTI benchmarks, achieving the lowest Average End-Point Error on KITTI2012 among two-frame methods, without using extra datasets.
Original language | English |
---|---|
Article number | 9156823 |
Pages (from-to) | 7995-8004 |
Number of pages | 10 |
Journal | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
DOIs | |
State | Published - 2020 |
Event | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, United States Duration: 14 Jun 2020 → 19 Jun 2020 |
Funding
Funders | Funder number |
---|---|
Horizon 2020 Framework Programme | |
European Commission | |
Horizon 2020 | 725974 |