TY - JOUR
T1 - Scaling function for critical scattering
AU - Fisher, Michael E.
AU - Aharony, Amnon
PY - 1973
Y1 - 1973
N2 - The zero-field, two-point correlation function of an n-vector system in d=4-ε dimensions is calculated to order ε2 for T>~Tc. The scaling function is obtained as a closed, cutoff-independent integral. As t=(T-Tc)Tc→0 at fixed wave vector q, the leading variation is E1n,d(q)t1-α+E2n,d(q)t, where α is the specific-heat exponent; thence the maximum in the scattering above Tc is located, in good agreement with high-T series-expansion estimates.
AB - The zero-field, two-point correlation function of an n-vector system in d=4-ε dimensions is calculated to order ε2 for T>~Tc. The scaling function is obtained as a closed, cutoff-independent integral. As t=(T-Tc)Tc→0 at fixed wave vector q, the leading variation is E1n,d(q)t1-α+E2n,d(q)t, where α is the specific-heat exponent; thence the maximum in the scattering above Tc is located, in good agreement with high-T series-expansion estimates.
UR - http://www.scopus.com/inward/record.url?scp=4243351996&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.31.1238
DO - 10.1103/PhysRevLett.31.1238
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:4243351996
SN - 0031-9007
VL - 31
SP - 1238
EP - 1241
JO - Physical Review Letters
JF - Physical Review Letters
IS - 20
ER -