Scaled random segmental models

Jacob Goldberger, David Burshtein

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We present the concept of a scaled random segmental model, which aims to overcome the modeling problem created by the fact that segment realizations of the same phonetic unit differ in length. In the scaled model the variance of the random mean trajectory is inversely proportional to the segment length. The scaled model enables a Baum-Welch type parameter reestimation, unlike the previously suggested, non-scaled models, that require more complicated iterative estimation procedures. In experiments we have conducted with phoneme classification, it was found that the scaled model shows improved performance compared to the non-scaled model.

Original languageEnglish
Title of host publicationProceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 1998
Pages809-812
Number of pages4
DOIs
StatePublished - 1998
Event1998 23rd IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 1998 - Seattle, WA, United States
Duration: 12 May 199815 May 1998

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2
ISSN (Print)1520-6149

Conference

Conference1998 23rd IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 1998
Country/TerritoryUnited States
CitySeattle, WA
Period12/05/9815/05/98

Fingerprint

Dive into the research topics of 'Scaled random segmental models'. Together they form a unique fingerprint.

Cite this