TY - GEN
T1 - Sample Selection for Universal Domain Adaptation
AU - Lifshitz, Omri
AU - Wolf, Lior
N1 - Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2021
Y1 - 2021
N2 - This paper studies the problem of unsupervised domain adaption in the universal scenario, in which only some of the classes are shared between the source and target domains. We present a scoring scheme that is effective in identifying the samples of the shared classes. The score is used to select samples in the target domain for which to apply specific losses during training; pseudo-labels for high scoring samples and confidence regularization for low scoring samples. Taken together, our method is shown to outperform, by a sizeable margin, the current state of the art on the literature benchmarks.
AB - This paper studies the problem of unsupervised domain adaption in the universal scenario, in which only some of the classes are shared between the source and target domains. We present a scoring scheme that is effective in identifying the samples of the shared classes. The score is used to select samples in the target domain for which to apply specific losses during training; pseudo-labels for high scoring samples and confidence regularization for low scoring samples. Taken together, our method is shown to outperform, by a sizeable margin, the current state of the art on the literature benchmarks.
UR - http://www.scopus.com/inward/record.url?scp=85129239533&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85129239533
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 8592
EP - 8600
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
PB - Association for the Advancement of Artificial Intelligence
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
Y2 - 2 February 2021 through 9 February 2021
ER -