Sample complexity of uniform convergence for multicalibration

Eliran Shabat*, Lee Cohen, Yishay Mansour

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

There is a growing interest in societal concerns in machine learning systems, especially in fairness. Multicalibration gives a comprehensive methodology to address group fairness. In this work, we address the multicalibration error and decouple it from the prediction error. The importance of decoupling the fairness metric (multicalibration) and the accuracy (prediction error) is due to the inherent tradeoff between the two, and the societal decision regarding the “right tradeoff” (as imposed many times by regulators). Our work gives sample complexity bounds for uniform convergence guarantees of multicalibration error, which implies that regardless of the accuracy, we can guarantee that the empirical and (true) multicalibration errors are close. We emphasize that our results: (1) are more general than previous bounds, as they apply to both agnostic and realizable settings, and do not rely on a specific type of algorithm (such as differentially private), (2) improve over previous multicalibration sample complexity bounds and (3) implies uniform convergence guarantees for the classical calibration error.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume2020-December
StatePublished - 2020
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: 6 Dec 202012 Dec 2020

Fingerprint

Dive into the research topics of 'Sample complexity of uniform convergence for multicalibration'. Together they form a unique fingerprint.

Cite this