TY - JOUR
T1 - Rosiglitazone improves aortic arginine transport, through inhibition of PKCα, in uremic rats
AU - Ingbir, Merav
AU - Schwartz, Idit F.
AU - Shtabsky, Alexander
AU - Filip, Irina
AU - Reshef, Ran
AU - Chernichovski, Tamara
AU - Levin-Iaina, Nomi
AU - Rozovski, Uri
AU - Levo, Yoram
AU - Schwartz, Doron
PY - 2008/8
Y1 - 2008/8
N2 - Peroxisome proliferator-activated receptor (PPAR) agonists were shown to inhibit atherosclerosis through augmentation of endothelial nitric oxide synthase (eNOS) activity. In addition, rosiglitazone exerts a beneficial effect in chronic renal failure (CRF). Since L-arginine transport by CAT-1 (the specific arginine transporter for eNOS) is inhibited in uremia, we aimed to explore the effect of rosiglitazone on arginine transport in CRF. Arginine uptake by aortic rings was studied in control animals, rats, 6 wk following 5/6 nephrectomy (CRF) and rats with CRF treated with rosiglitazone. The decrease of arginine transport in CRF was prevented by rosiglitazone. Immunobloting revealed that CAT-1 protein was decreased in CRF but remained unchanged following rosiglitazone administration. Protein content of the membrane fraction of PKCα and phosphorylated CAT-1 increased significantly in CRF, effects that were prevented by rosiglitazone. PKCα phosphorylation was unchanged but significantly attenuated by rosiglitazone in CRF. Ex vivo administration of phorbol-12-myristate-13-acetate to rosiglitazone-treated CRF rats significantly attenuated the effect of rosiglitazone on arginine uptake. The decrease in cGMP response to carbamyl-choline (eNOS agonist) was significantly attenuated by rosiglitazone in CRF. Western blotting and immunohistochemistry analysis revealed that protein nitration was intensified in the endothelium of CRF rats and this was attenuated by rosiglitazone. In conclusion, rosiglitazone prevents the decrease in arginine uptake in CRF through both depletion and inactivation of PKCα. These findings are associated with restoration of eNO generation and attenuation of protein nitration and therefore may serve as a novel mechanism to explain the beneficial effects of rosiglitazone on endothelial function in uremia.
AB - Peroxisome proliferator-activated receptor (PPAR) agonists were shown to inhibit atherosclerosis through augmentation of endothelial nitric oxide synthase (eNOS) activity. In addition, rosiglitazone exerts a beneficial effect in chronic renal failure (CRF). Since L-arginine transport by CAT-1 (the specific arginine transporter for eNOS) is inhibited in uremia, we aimed to explore the effect of rosiglitazone on arginine transport in CRF. Arginine uptake by aortic rings was studied in control animals, rats, 6 wk following 5/6 nephrectomy (CRF) and rats with CRF treated with rosiglitazone. The decrease of arginine transport in CRF was prevented by rosiglitazone. Immunobloting revealed that CAT-1 protein was decreased in CRF but remained unchanged following rosiglitazone administration. Protein content of the membrane fraction of PKCα and phosphorylated CAT-1 increased significantly in CRF, effects that were prevented by rosiglitazone. PKCα phosphorylation was unchanged but significantly attenuated by rosiglitazone in CRF. Ex vivo administration of phorbol-12-myristate-13-acetate to rosiglitazone-treated CRF rats significantly attenuated the effect of rosiglitazone on arginine uptake. The decrease in cGMP response to carbamyl-choline (eNOS agonist) was significantly attenuated by rosiglitazone in CRF. Western blotting and immunohistochemistry analysis revealed that protein nitration was intensified in the endothelium of CRF rats and this was attenuated by rosiglitazone. In conclusion, rosiglitazone prevents the decrease in arginine uptake in CRF through both depletion and inactivation of PKCα. These findings are associated with restoration of eNO generation and attenuation of protein nitration and therefore may serve as a novel mechanism to explain the beneficial effects of rosiglitazone on endothelial function in uremia.
KW - Endothelial function
KW - Protein nitration
KW - Uremia
UR - http://www.scopus.com/inward/record.url?scp=52449093665&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.00619.2007
DO - 10.1152/ajprenal.00619.2007
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 18524858
AN - SCOPUS:52449093665
SN - 1931-857X
VL - 295
SP - F471-F477
JO - American Journal of Physiology - Renal Physiology
JF - American Journal of Physiology - Renal Physiology
IS - 2
ER -