Role of the fast kinetics of pyroglutamate-modified amyloid-β oligomers in membrane binding and membrane permeability

Joon Lee, Alan L. Gillman, Hyunbum Jang, Srinivasan Ramachandran, Bruce L. Kagan, Ruth Nussinov, Fernando Teran Arce*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Membrane permeability to ions and small molecules is believed to be a critical step in the pathology of Alzheimers disease (AD). Interactions of oligomers formed by amyloid-β (Aβ) peptides with the plasma cell membrane are believed to play a fundamental role in the processes leading to membrane permeability. Among the family of Aβs, pyroglutamate (pE)-modified Aβ peptides constitute the most abundant oligomeric species in the brains of AD patients. Although membrane permeability mechanisms have been studied for full-length Aβ1-40/42 peptides, these have not been sufficiently characterized for the more abundant AβpE3-42 fragment. Here we have compared the adsorbed and membrane-inserted oligomeric species of AβpE3-42 and Aβ1-42 peptides. We find lower concentrations and larger dimensions for both species of membrane-associated AβpE3-42 oligomers. The larger dimensions are attributed to the faster self-assembly kinetics of AβpE3-42, and the lower concentrations are attributed to weaker interactions with zwitterionic lipid headgroups. While adsorbed oligomers produced little or no significant membrane structural damage, increased membrane permeabilization to ionic species is understood in terms of enlarged membrane-inserted oligomers. Membrane-inserted AβpE3-42 oligomers were also found to modify the mechanical properties of the membrane. Taken together, our results suggest that membrane-inserted oligomers are the primary species responsible for membrane permeability.

Original languageEnglish
Pages (from-to)4704-4714
Number of pages11
JournalBiochemistry
Volume53
Issue number28
DOIs
StatePublished - 22 Jul 2014

Funding

FundersFunder number
National Institute on AgingR01AG028709

    Fingerprint

    Dive into the research topics of 'Role of the fast kinetics of pyroglutamate-modified amyloid-β oligomers in membrane binding and membrane permeability'. Together they form a unique fingerprint.

    Cite this