Abstract
We introduce a temperature into the exponential function and replace the softmax output layer of the neural networks by a high-temperature generalization. Similarly, the logarithm in the loss we use for training is replaced by a low-temperature logarithm. By tuning the two temperatures, we create loss functions that are non-convex already in the single layer case. When replacing the last layer of the neural networks by our bi-temperature generalization of the logistic loss, the training becomes more robust to noise. We visualize the effect of tuning the two temperatures in a simple setting and show the efficacy of our method on large datasets. Our methodology is based on Bregman divergences and is superior to a related two-temperature method that uses the Tsallis divergence.
Original language | English |
---|---|
Journal | Advances in Neural Information Processing Systems |
Volume | 32 |
State | Published - 2019 |
Event | 33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada Duration: 8 Dec 2019 → 14 Dec 2019 |
Funding
Funders | Funder number |
---|---|
National Science Foundation | IIS-1546459 |
National Science Foundation |