Rivaroxaban significantly inhibits the stimulatory effects of bone-modulating hormones: In vitro study of primary female osteoblasts

Dalia Somjen, Zachary T. Sharfman, Sara Katzburg, Orli Sharon, Eran Maman, Moshe Salai, Naftali Stern, Oleg Dolkart

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Anticoagulant therapy is a mainstay of treatment subsequent to major orthopedic surgeries. Evidence linking anticoagulant therapy, osteoporosis, and delayed fracture healing is not conclusive. We have previously reported that rivaroxaban significantly inhibited cell growth and energy metabolism in a human osteoblastic cell line. This study analyzed the response of primary female osteoblast cells to rivaroxaban in combination with various bone-modulating hormones. Methods: Bone samples were taken from both premenopausal (pre-Ob) and postmenopausal (post-Ob) women. Cells were isolated from each sample and cultured to sub-confluence. Each sample was then treated with Rivaroxaban (10 µg/ml) in combination with the following hormones or with the hormones alone for 24 hours: 30nM estradiol-17β (E2), 390nM estrogen receptor α (ERα) agonist PPT, 420nM estrogen receptor β (ERβ) agonist DPN, 50nM parathyroid hormone (PTH), and 1nM of vitamin D analog JKF. Results: No effects were observed after exposure to rivaroxaban alone. When pre-Ob and post-Ob cells were exposed to the bone-modulating hormones as a control experiment, DNA synthesis and creatine kinase (CK)-specific activity was significantly stimulated with a greater response in the pre-Ob cells. When the cells were exposed to rivaroxaban in combination with bone-modulating hormones, the increased DNA synthesis and CK-specific activity previously observed were completely attenuated. Conclusions: Rivaroxaban significantly inhibited the stimulatory effects of bone-modulating hormones in both pre-Ob and post-Ob primary human cell lines. This finding may have clinical relevance for patients at high risk of osteoporosis managed with rivaroxaban or other factor Xa inhibitors.

Original languageEnglish
Pages (from-to)215-220
Number of pages6
JournalConnective Tissue Research
Volume58
Issue number2
DOIs
StatePublished - 4 Mar 2017

Keywords

  • Calciotrophic hormones
  • cell proliferation
  • energy metabolism
  • estrogens
  • human female osteoblasts
  • rivaroxaban

Fingerprint

Dive into the research topics of 'Rivaroxaban significantly inhibits the stimulatory effects of bone-modulating hormones: In vitro study of primary female osteoblasts'. Together they form a unique fingerprint.

Cite this