TY - JOUR
T1 - Reversal of the Ras-induced transformed phenotype by HR12, a novel Ras farnesylation inhibitor, is mediated by the Mek/Erk pathway
AU - Reuveni, Hadas
AU - Geiger, Tamar
AU - Geiger, Benjamin
AU - Levitzki, Alexander
PY - 2000/12/11
Y1 - 2000/12/11
N2 - We have used the selective farnesylation inhibitor HR12 [cysteine-N(methyl)valine-N(cyclohexyl) glycine-methionine-O-methyl-ester] to study the role of oncogenic Ras in cytoskeletal reorganization in Ha-ras(V12)-transformed Rat1 cells (Rat1/ras). Application of HR12 resulted in complete restoration of the cytoskeleton and associated cell adhesions disrupted by oncogenic Ras. This included an increase in the number and size of focal adhesions, accompanied by massive stress fiber formation and enhanced tyrosine phosphorylation. Furthermore, HR12 induced assembly of adherens junctions and dramatically elevated the level of the junctional components, cadherin and β-catenin. HR12 was unable to restore the nontransformed phenotype in cells expressing farnesylation-independent, myristylated Ras. Examination of the main Ras-regulated signaling pathways revealed that HR12 induced a dose- and time-dependent decline in Erk1and2 activation (t 1/2 ~ 6 h), which correlated with the accumulation of nonfarnesylated oncogenic-Ras. Inhibition of the Mek/Erk pathway in Rat1/ras cells, using the Mek inhibitor, PD98059, resulted in complete cytoskeletal recovery, indistinguishable from that induced by HR12. Moreover, a constitutively active Mek mimicked the effect of ras transformation in Rat1 cells, and prevented HR12-induced cytoskeletal effects in Rat1/ras cells. No such effects were observed after treatment of Rat1/ras cells with the phosphatidylinositol 3-kinase inhibitor LY294002. These findings establish the Mek/Erk pathway as the dominant pathway involved in conferring the cytoskeletal and junctional manifestations of the Ras-induced transformed phenotype.
AB - We have used the selective farnesylation inhibitor HR12 [cysteine-N(methyl)valine-N(cyclohexyl) glycine-methionine-O-methyl-ester] to study the role of oncogenic Ras in cytoskeletal reorganization in Ha-ras(V12)-transformed Rat1 cells (Rat1/ras). Application of HR12 resulted in complete restoration of the cytoskeleton and associated cell adhesions disrupted by oncogenic Ras. This included an increase in the number and size of focal adhesions, accompanied by massive stress fiber formation and enhanced tyrosine phosphorylation. Furthermore, HR12 induced assembly of adherens junctions and dramatically elevated the level of the junctional components, cadherin and β-catenin. HR12 was unable to restore the nontransformed phenotype in cells expressing farnesylation-independent, myristylated Ras. Examination of the main Ras-regulated signaling pathways revealed that HR12 induced a dose- and time-dependent decline in Erk1and2 activation (t 1/2 ~ 6 h), which correlated with the accumulation of nonfarnesylated oncogenic-Ras. Inhibition of the Mek/Erk pathway in Rat1/ras cells, using the Mek inhibitor, PD98059, resulted in complete cytoskeletal recovery, indistinguishable from that induced by HR12. Moreover, a constitutively active Mek mimicked the effect of ras transformation in Rat1 cells, and prevented HR12-induced cytoskeletal effects in Rat1/ras cells. No such effects were observed after treatment of Rat1/ras cells with the phosphatidylinositol 3-kinase inhibitor LY294002. These findings establish the Mek/Erk pathway as the dominant pathway involved in conferring the cytoskeletal and junctional manifestations of the Ras-induced transformed phenotype.
KW - Adherens junctions
KW - Cytoskeleton
KW - Erk
KW - Farnesyltransferase
KW - Ras
UR - http://www.scopus.com/inward/record.url?scp=0034638835&partnerID=8YFLogxK
U2 - 10.1083/jcb.151.6.1179
DO - 10.1083/jcb.151.6.1179
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 11121434
AN - SCOPUS:0034638835
SN - 0021-9525
VL - 151
SP - 1179
EP - 1192
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 6
ER -