Revealing the Coulomb interaction strength in a cuprate superconductor

S. L. Yang, J. A. Sobota, Y. He, Y. Wang, D. Leuenberger, H. Soifer, M. Hashimoto, D. H. Lu, H. Eisaki, B. Moritz, T. P. Devereaux, P. S. Kirchmann, Z. X. Shen

Research output: Contribution to journalArticlepeer-review


We study optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8+δ (Bi2212) using angle-resolved two-photon photoemission spectroscopy. Three spectral features are resolved near 1.5, 2.7, and 3.6 eV above the Fermi level. By tuning the photon energy, we determine that the 2.7-eV feature arises predominantly from unoccupied states. The 1.5- and 3.6-eV features reflect unoccupied states whose spectral intensities are strongly modulated by the corresponding occupied states. These unoccupied states are consistent with the prediction from a cluster perturbation theory based on the single-band Hubbard model. Through this comparison, a Coulomb interaction strength U of 2.7 eV is extracted. Our study complements equilibrium photoemission spectroscopy and provides a direct spectroscopic measurement of the unoccupied states in cuprates. The determined Coulomb U indicates that the charge-transfer gap of optimally doped Bi2212 is 1.1 eV.

Original languageEnglish
Article number245112
JournalPhysical Review B
Issue number24
StatePublished - 8 Dec 2017
Externally publishedYes


Dive into the research topics of 'Revealing the Coulomb interaction strength in a cuprate superconductor'. Together they form a unique fingerprint.

Cite this