Resonant nonlinearity management for nonlinear Schrödinger solitons

Hidetsugu Sakaguchi, Boris A. Malomed

Research output: Contribution to journalArticlepeer-review

Abstract

We consider effects of a periodic modulation of the nonlinearity coefficient on fundamental and higher-order solitons in the one-dimensional NLS equation, which is an issue of direct interest to Bose-Einstein condensates in the context of the Feshbach-resonance control, and fiber-optic telecommunications as concerns periodic compensation of the nonlinearity. We find from simulations, and explain by means of a straightforward analysis, that the response of a fundamental soliton to the weak perturbation is resonant, if the modulation frequency [Formula presented] is close to the intrinsic frequency of the soliton. For higher-order [Formula presented]-solitons with [Formula presented] and 3, the response to an extremely weak perturbation is also resonant, if [Formula presented] is close to the corresponding intrinsic frequency. More importantly, a slightly stronger drive splits the 2- or 3-soliton, respectively, into a set of two or three moving fundamental solitons. The dependence of the threshold perturbation amplitude, necessary for the splitting, on [Formula presented] has a resonant character too. Amplitudes and velocities of the emerging fundamental solitons are accurately predicted, using exact and approximate conservation laws of the perturbed NLS equation.

Original languageEnglish
Pages (from-to)7
Number of pages1
JournalPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Volume70
Issue number6
DOIs
StatePublished - 2004

Fingerprint

Dive into the research topics of 'Resonant nonlinearity management for nonlinear Schrödinger solitons'. Together they form a unique fingerprint.

Cite this