TY - JOUR
T1 - Resolving the enigma of Iquitos and Manaus
T2 - A modeling analysis of multiple COVID-19 epidemic waves in two Amazonian cities
AU - He, Daihai
AU - Lin, Lixin
AU - Artzy-Randrup, Yael
AU - Demirhan, Haydar
AU - Cowling, Benjamin J.
AU - Stone, Lewi
N1 - Publisher Copyright:
Copyright © 2023 the Author(s). Published by PNAS.
PY - 2023/3/7
Y1 - 2023/3/7
N2 - The two nearby Amazonian cities of Iquitos and Manaus endured explosive COVID-19 epidemics and may well have suffered the world’s highest infection and death rates over 2020, the first year of the pandemic. State-of-the-art epidemiological and modeling studies estimated that the populations of both cities came close to attaining herd immunity (>70% infected) at the termination of the first wave and were thus protected. This makes it difficult to explain the more deadly second wave of COVID-19 that struck again in Manaus just months later, simultaneous with the appearance of a new P.1 variant of concern, creating a catastrophe for the unprepared population. It was suggested that the second wave was driven by reinfections, but the episode has become controversial and an enigma in the history of the pandemic. We present a data-driven model of epidemic dynamics in Iquitos, which we also use to explain and model events in Manaus. By reverse engineering the multiple epidemic waves over 2 y in these two cities, the partially observed Markov process model inferred that the first wave left Manaus with a highly susceptible and vulnerable population (≈40% infected) open to invasion by P.1, in contrast to Iquitos (≈72% infected). The model reconstructed the full epidemic outbreak dynamics from mortality data by fitting a flexible time-varying reproductive number R0(t)while estimating reinfection and impulsive immune evasion. The approach is currently highly relevant given the lack of tools available to assess these factors as new SARS-CoV-2 virus variants appear with different degrees of immune evasion.
AB - The two nearby Amazonian cities of Iquitos and Manaus endured explosive COVID-19 epidemics and may well have suffered the world’s highest infection and death rates over 2020, the first year of the pandemic. State-of-the-art epidemiological and modeling studies estimated that the populations of both cities came close to attaining herd immunity (>70% infected) at the termination of the first wave and were thus protected. This makes it difficult to explain the more deadly second wave of COVID-19 that struck again in Manaus just months later, simultaneous with the appearance of a new P.1 variant of concern, creating a catastrophe for the unprepared population. It was suggested that the second wave was driven by reinfections, but the episode has become controversial and an enigma in the history of the pandemic. We present a data-driven model of epidemic dynamics in Iquitos, which we also use to explain and model events in Manaus. By reverse engineering the multiple epidemic waves over 2 y in these two cities, the partially observed Markov process model inferred that the first wave left Manaus with a highly susceptible and vulnerable population (≈40% infected) open to invasion by P.1, in contrast to Iquitos (≈72% infected). The model reconstructed the full epidemic outbreak dynamics from mortality data by fitting a flexible time-varying reproductive number R0(t)while estimating reinfection and impulsive immune evasion. The approach is currently highly relevant given the lack of tools available to assess these factors as new SARS-CoV-2 virus variants appear with different degrees of immune evasion.
KW - COVID
KW - epidemic
KW - fitting data
KW - model
KW - pandemic
UR - http://www.scopus.com/inward/record.url?scp=85148969012&partnerID=8YFLogxK
U2 - 10.1073/pnas.2211422120
DO - 10.1073/pnas.2211422120
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 36848558
AN - SCOPUS:85148969012
SN - 0027-8424
VL - 120
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 10
M1 - e2211422120
ER -