TY - JOUR
T1 - Reproductive isolation between populations of Iris atropurpurea is associated with ecological differentiation
AU - Yardeni, Gil
AU - Tessler, Naama
AU - Imbert, Eric
AU - Sapir, Yuval
N1 - Publisher Copyright:
© 2016 The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved.
PY - 2016/10/1
Y1 - 2016/10/1
N2 - Background and Aims Speciation is often described as a continuous dynamic process, expressed by different magnitudes of reproductive isolation (RI) among groups in different levels of divergence. Studying intraspecific partial RI can shed light on mechanisms underlying processes of population divergence. Intraspecific divergence can be driven by spatially stochastic accumulation of genetic differences following reduced gene flow, resulting in increased RI with increased geographical distance, or by local adaptation, resulting in increased RI with environmental difference. Methods We tested for RI as a function of both geographical distance and ecological differentiation in Iris atropurpurea, an endemic Israeli coastal plant. We crossed plants in the Netanya Iris Reserve population with plants from 14 populations across the species' full distribution, and calculated RI and reproductive success based on fruit set, seed set and fraction of seed viability. Key Results We found that total RI was not significantly associated with geographical distance, but significantly increased with ecological distance. Similarly, reproductive success of the crosses, estimated while controlling for the dependency of each component on the previous stage, significantly reduced with increased ecological distance. Conclusions Our results indicate that the rise of post-pollination reproductive barriers in I. atropurpurea is more affected by ecological differentiation between populations than by geographical distance, supporting the hypothesis that ecological differentiation is predominant over isolation by distance and by reduced gene flow in this species. These findings also affect conservation management, such as genetic rescue, in the highly fragmented and endangered I. atropurpurea.
AB - Background and Aims Speciation is often described as a continuous dynamic process, expressed by different magnitudes of reproductive isolation (RI) among groups in different levels of divergence. Studying intraspecific partial RI can shed light on mechanisms underlying processes of population divergence. Intraspecific divergence can be driven by spatially stochastic accumulation of genetic differences following reduced gene flow, resulting in increased RI with increased geographical distance, or by local adaptation, resulting in increased RI with environmental difference. Methods We tested for RI as a function of both geographical distance and ecological differentiation in Iris atropurpurea, an endemic Israeli coastal plant. We crossed plants in the Netanya Iris Reserve population with plants from 14 populations across the species' full distribution, and calculated RI and reproductive success based on fruit set, seed set and fraction of seed viability. Key Results We found that total RI was not significantly associated with geographical distance, but significantly increased with ecological distance. Similarly, reproductive success of the crosses, estimated while controlling for the dependency of each component on the previous stage, significantly reduced with increased ecological distance. Conclusions Our results indicate that the rise of post-pollination reproductive barriers in I. atropurpurea is more affected by ecological differentiation between populations than by geographical distance, supporting the hypothesis that ecological differentiation is predominant over isolation by distance and by reduced gene flow in this species. These findings also affect conservation management, such as genetic rescue, in the highly fragmented and endangered I. atropurpurea.
KW - Adaptive divergence
KW - Iris atropurpurea Baker
KW - Iris section Oncocyclus
KW - aster modelling
KW - isolation by distance
KW - isolation by ecology
KW - local adaptation
KW - post-zygotic reproductive barriers
UR - http://www.scopus.com/inward/record.url?scp=84994091638&partnerID=8YFLogxK
U2 - 10.1093/aob/mcw139
DO - 10.1093/aob/mcw139
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84994091638
SN - 0305-7364
VL - 118
SP - 971
EP - 982
JO - Annals of Botany
JF - Annals of Botany
IS - 5
ER -