Remote internal wave forcing of regional ocean simulations near the U.S. West Coast

Oladeji Q. Siyanbola*, Maarten C. Buijsman, Audrey Delpech, Lionel Renault, Roy Barkan, Jay F. Shriver, Brian K. Arbic, James C. McWilliams

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Low mode internal waves are able to propagate across ocean basins and modulate ocean dynamics thousands of kilometers away from their generation sites. In this study, the impact of remotely generated internal waves on the internal wave energetics near the U.S. West Coast is investigated with realistically forced regional ocean simulations. At the open boundaries, we impose high-frequency oceanic state variables obtained from a global ocean simulation with realistic atmospheric and astronomical tidal forcing. We use the Discrete Fourier Transform (DFT) technique in separating ingoing and outgoing internal tide energy fluxes at the open boundaries in order to quantify internal tide reflections. Although internal tide reflections are reduced with increasing sponge viscosity and/or sponge layer width, reflection coefficients (λ) can be as high as 73%. In the presence of remote internal waves, the model variance and spatial correlations become more in agreement with both mooring and altimetry datasets. The results confirm that an improved internal wave continuum can be achieved in regional models with remote internal wave forcing at the open boundaries. However, care should be taken to avoid excessive reflections of internal waves from the interior at these boundaries.

Original languageEnglish
Article number102154
JournalOcean Modelling
Volume181
DOIs
StatePublished - Feb 2023

Keywords

  • High-frequency boundary forcing
  • Internal waves
  • Model-data comparison
  • Open boundary sensitivity
  • Regional ocean modeling
  • U.S. West Coast

Fingerprint

Dive into the research topics of 'Remote internal wave forcing of regional ocean simulations near the U.S. West Coast'. Together they form a unique fingerprint.

Cite this