Relativistic coupled cluster study of diatomic compounds of Hg, Cn, and Fl

A. Borschevsky, V. Pershina, E. Eliav, U. Kaldor

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


The structure and energetics of eight diatomic heavy-atom molecules are presented. These include the species MAu, M2, and MHg, with M standing for the Hg, Cn (element 112), and Fl (element 114) atoms. The infinite-order relativistic 2-component Hamiltonian, known to closely reproduce 4-component results at lower computational cost, is used as framework. High-accuracy treatment of correlation is achieved by using the coupled cluster scheme with single, double, and perturbative triple excitations in large converged basis sets. The calculated interatomic separation and bond energy of Hg2, the only compound with known experimental data, are in good agreement with measurements. The binding of Fl to Au is stronger than that of Cn, predicting stronger adsorption on gold surfaces. The bond in the M 2 species is strongest for Fl2, being of chemical nature; weaker bonds appear in Cn2 and Hg2, which are bound by van der Waals interactions, with the former bound more strongly due to the smaller van der Waals radius. The same set of calculations was also performed using the relativistic density functional theory approach, in order to test the performance of the latter for these weakly bound systems with respect to the more accurate coupled cluster calculations. It was found that for the MAu species the B3LYP functional provides better agreement with the coupled cluster results than the B88/P86 functional. However, for the M2 and the MHg molecules, B3LYP tends to underestimate the binding energies.

Original languageEnglish
Article number084301
JournalJournal of Chemical Physics
Issue number8
StatePublished - 28 Aug 2014


Dive into the research topics of 'Relativistic coupled cluster study of diatomic compounds of Hg, Cn, and Fl'. Together they form a unique fingerprint.

Cite this