TY - JOUR
T1 - Relative growth rate and contact Banach–Mazur distance
AU - Rosen, Daniel
AU - Zhang, Jun
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature B.V.
PY - 2021/12
Y1 - 2021/12
N2 - In this paper, we define non-linear versions of Banach–Mazur distance in the contact geometry set-up, called contact Banach–Mazur distances and denoted by dCBM. Explicitly, we consider the following two set-ups, either on a contact manifold W× S1 where W is a Liouville manifold, or a closed Liouville-fillable contact manifold M. The inputs of dCBM are different in these two cases. In the former case the inputs are (contact) star-shaped domains of W× S1 which correspond to the homotopy classes of positive contact isotopies, and in the latter case the inputs are contact 1-forms of M inducing the same contact structure. In particular, the contact Banach–Mazur distance dCBM defined in the former case is motivated by the concept, relative growth rate, which was originally defined and studied by Eliashberg–Polterovich. The main results are the large-scale geometric properties in terms of dCBM. In addition, we propose a quantitative comparison between elements in a certain subcategory of the derived categories of sheaves of modules (over certain topological spaces). This is based on several important properties of the singular support of sheaves and Guillermou–Kashiwara–Schapira’s sheaf quantization.
AB - In this paper, we define non-linear versions of Banach–Mazur distance in the contact geometry set-up, called contact Banach–Mazur distances and denoted by dCBM. Explicitly, we consider the following two set-ups, either on a contact manifold W× S1 where W is a Liouville manifold, or a closed Liouville-fillable contact manifold M. The inputs of dCBM are different in these two cases. In the former case the inputs are (contact) star-shaped domains of W× S1 which correspond to the homotopy classes of positive contact isotopies, and in the latter case the inputs are contact 1-forms of M inducing the same contact structure. In particular, the contact Banach–Mazur distance dCBM defined in the former case is motivated by the concept, relative growth rate, which was originally defined and studied by Eliashberg–Polterovich. The main results are the large-scale geometric properties in terms of dCBM. In addition, we propose a quantitative comparison between elements in a certain subcategory of the derived categories of sheaves of modules (over certain topological spaces). This is based on several important properties of the singular support of sheaves and Guillermou–Kashiwara–Schapira’s sheaf quantization.
KW - Contact Banach–Mazur distance
KW - Contact shape invariant
KW - Relative growth rate
KW - Sheaf quantization
UR - http://www.scopus.com/inward/record.url?scp=85111109089&partnerID=8YFLogxK
U2 - 10.1007/s10711-021-00638-7
DO - 10.1007/s10711-021-00638-7
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85111109089
SN - 0046-5755
VL - 215
JO - Geometriae Dedicata
JF - Geometriae Dedicata
IS - 1
ER -