Relative growth rate and contact Banach–Mazur distance

Daniel Rosen, Jun Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, we define non-linear versions of Banach–Mazur distance in the contact geometry set-up, called contact Banach–Mazur distances and denoted by dCBM. Explicitly, we consider the following two set-ups, either on a contact manifold W× S1 where W is a Liouville manifold, or a closed Liouville-fillable contact manifold M. The inputs of dCBM are different in these two cases. In the former case the inputs are (contact) star-shaped domains of W× S1 which correspond to the homotopy classes of positive contact isotopies, and in the latter case the inputs are contact 1-forms of M inducing the same contact structure. In particular, the contact Banach–Mazur distance dCBM defined in the former case is motivated by the concept, relative growth rate, which was originally defined and studied by Eliashberg–Polterovich. The main results are the large-scale geometric properties in terms of dCBM. In addition, we propose a quantitative comparison between elements in a certain subcategory of the derived categories of sheaves of modules (over certain topological spaces). This is based on several important properties of the singular support of sheaves and Guillermou–Kashiwara–Schapira’s sheaf quantization.

Original languageEnglish
JournalGeometriae Dedicata
Volume215
Issue number1
DOIs
StatePublished - Dec 2021
Externally publishedYes

Keywords

  • Contact Banach–Mazur distance
  • Contact shape invariant
  • Relative growth rate
  • Sheaf quantization

Fingerprint

Dive into the research topics of 'Relative growth rate and contact Banach–Mazur distance'. Together they form a unique fingerprint.

Cite this