Red and Reddened: Ultraviolet through Near-infrared Observations of Type Ia Supernova 2017erp

Peter J. Brown, Griffin Hosseinzadeh, Saurabh W. Jha, David Sand, Ethan Vieira, Xiaofeng Wang, Mi Dai, Kyle G. Dettman, Jeremy Mould, Syed Uddin, Lifan Wang, Iair Arcavi, Joao Bento, Chris R. Burns, Tiara Diamond, Daichi Hiramatsu, D. Andrew Howell, E. Y. Hsiao, G. H. Marion, Curtis McCullyPeter A. Milne, Davron Mirzaqulov, Ashley J. Ruiter, Stefano Valenti, Danfeng Xiang

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

We present space-based ultraviolet/optical photometry and spectroscopy with the Swift Ultra-Violet/Optical Telescope and Hubble Space Telescope (HST), respectively, along with ground-based optical photometry and spectroscopy and near-infrared spectroscopy of supernova SN 2017erp. The optical light curves and spectra are consistent with a normal SN Ia. Compared to previous photometric samples in the near-ultraviolet (NUV), SN 2017erp has UV colors that are redder than NUV-blue SNe Ia corrected to similar optical colors. The chromatic difference between SNe 2011fe and 2017erp is dominated by the intrinsic differences in the UV rather than the expected dust reddening. This chromatic difference is similar to the SALT2 color law, derived from rest-frame ultraviolet photometry of higher redshift SNe Ia. Differentiating between intrinsic UV diversity and dust reddening can have important consequences for determining cosmological distances with rest-frame ultraviolet photometry. This ultraviolet spectroscopic series is the first from HST of a normal, albeit reddened, NUV-red SN Ia and is important for analyzing SNe Ia with intrinsically redder NUV colors. We show model comparisons suggesting that metallicity could be the physical difference between NUV-blue and NUV-red SNe Ia, with emission peaks from reverse fluorescence near 3000 Å implying a factor of ∼10 higher metallicity in the upper layers of SN 2017erp compared to SN 2011fe. Metallicity estimates are very model dependent, however, and there are multiple effects in the UV. Further models and UV spectra of SNe Ia are needed to explore the diversity of SNe Ia, which show seemingly independent differences in the near-UV peaks and mid-UV flux levels.

Original languageEnglish
Article number152
JournalAstrophysical Journal
Volume877
Issue number2
DOIs
StatePublished - 1 Jun 2019

Funding

FundersFunder number
National Science Foundation1813176, 1817099
Directorate for Mathematical and Physical Sciences1813466, 1821987, 1821967, 1813708, 1313484

    Keywords

    • dust, extinction
    • supernovae: general
    • supernovae: individual (SN2017erp, SN2011fe, SN2011by)

    Fingerprint

    Dive into the research topics of 'Red and Reddened: Ultraviolet through Near-infrared Observations of Type Ia Supernova 2017erp'. Together they form a unique fingerprint.

    Cite this