Recipient-independent, high-accuracy FMT-response prediction and optimization in mice and humans

Oshrit Shtossel*, Sondra Turjeman, Alona Riumin, Michael R. Goldberg, Arnon Elizur, Yarin Bekor, Hadar Mor, Omry Koren, Yoram Louzoun*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Background: Some microbiota compositions are associated with negative outcomes, including among others, obesity, allergies, and the failure to respond to treatment. Microbiota manipulation or supplementation can restore a community associated with a healthy condition. Such interventions are typically probiotics or fecal microbiota transplantation (FMT). FMT donor selection is currently based on donor phenotype, rather than the anticipated microbiota composition in the recipient and associated health benefits. However, the donor and post-transplant recipient conditions differ drastically. We here propose an algorithm to identify ideal donors and predict the expected outcome of FMT based on donor microbiome alone. We also demonstrate how to optimize FMT for different required outcomes. Results: We show, using multiple microbiome properties, that donor and post-transplant recipient microbiota differ widely and propose a tool to predict the recipient post-transplant condition (engraftment success and clinical outcome), using only the donors’ microbiome and, when available, demographics for transplantations from humans to either mice or other humans (with or without antibiotic pre-treatment). We validated the predictor using a de novo FMT experiment highlighting the possibility of choosing transplants that optimize an array of required goals. We then extend the method to characterize a best-planned transplant (bacterial cocktail) by combining the predictor and a generative genetic algorithm (GA). We further show that a limited number of taxa is enough for an FMT to produce a desired microbiome or phenotype. Conclusions: Off-the-shelf FMT requires recipient-independent optimized FMT selection. Such a transplant can be from an optimal donor or from a cultured set of microbes. We have here shown the feasibility of both types of manipulations in mouse and human recipients. [MediaObject not available: see fulltext.]

Original languageEnglish
Article number181
JournalMicrobiome
Volume11
Issue number1
DOIs
StatePublished - Dec 2023

Funding

FundersFunder number
Miriam Beller
European Research Council
Horizon 2020 Framework Programme101001355
Israel Science Foundation870/20

    Fingerprint

    Dive into the research topics of 'Recipient-independent, high-accuracy FMT-response prediction and optimization in mice and humans'. Together they form a unique fingerprint.

    Cite this