Reactivity of a dihydroboron species: synthesis of a hydroborenium complex and an expedient entry into stable thioxo- and selenoxo-boranes

Kuldeep Jaiswal, Billa Prashanth, Satyam Ravi, K. R. Shamasundar, Sanjay Singh*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The reaction of a recently synthesized dihydroboron species complexed with bis(phosphinimino)amide, LBH2 (1), (L = [N(Ph2PN(2,4,6-Me3C6H2))2]-) with 3 equivalents of BH2Cl·SMe2 or one equivalent of BCl3 affords the first stable monohydridoborenium ion, [LBH]+[HBCl3]- (2) that is stable without a weakly coordinating bulky anion. Compound 2 can also be prepared directly by refluxing LH with 3 equivalents of BH2Cl·SMe2. Interestingly, reaction of LBH2 (1) with elemental sulfur and selenium involves oxidative addition of S and Se into B-H bonds and subsequent release of H2S (or H2Se) from the intermediate LB(SH)2 (or LB(SeH)2) species forming stable compounds with terminal boron-chalcogen double bonds LB=S (3) and LB=;Se (4). The electronic structures of compounds 2, 3 and 4 were elucidated by high resolution mass spectrometry, multi-nuclear NMR and single crystal X-ray diffraction studies. Ab initio calculations on 3 are in excellent agreement with its experimental structure and clearly support the existence of the boron-sulfur double bond.

Original languageEnglish
Pages (from-to)15779-15785
Number of pages7
JournalDalton Transactions
Volume44
Issue number36
DOIs
StatePublished - 5 Aug 2015
Externally publishedYes

Fingerprint

Dive into the research topics of 'Reactivity of a dihydroboron species: synthesis of a hydroborenium complex and an expedient entry into stable thioxo- and selenoxo-boranes'. Together they form a unique fingerprint.

Cite this