RC100: Rotation Curves of 100 Massive Star-forming Galaxies at z = 0.6-2.5 Reveal Little Dark Matter on Galactic Scales

A. Nestor Shachar, S. H. Price, N. M. Förster Schreiber, R. Genzel, T. T. Shimizu, L. J. Tacconi, H. Übler, A. Burkert, R. I. Davies, A. Dekel, R. Herrera-Camus, L. L. Lee, D. Liu, D. Lutz, T. Naab, R. Neri, A. Renzini, R. Saglia, K. F. Schuster, A. SternbergE. Wisnioski, S. Wuyts

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

We analyze Hα or CO rotation curves extending out to several galaxy effective radii for 100 massive, large, star-forming disk galaxies (SFGs) across the peak of cosmic galaxy star formation (z ∼ 0.6-2.5), more than doubling the previous sample presented by Genzel et al. and Price et al. The observations were taken with SINFONI and KMOS integral-field spectrographs at the ESO-Very Large Telescope, LUCI-LBT, NOEMA-IRAM, and Atacama Large Millimeter/submillimeter Array. We fit the major-axis kinematics with beam-convolved, forward models of turbulent rotating disks with bulges embedded in dark matter (DM) halos, including the effects of pressure support. The fraction of dark to total matter within the disk effective radius (R e ∼ 5 kpc), f DM(R e) = V 2DM(R e)/V 2circ(R e) decreases with redshift: at z ∼ 1 (z ∼ 2) the median DM fraction is 0.38 ± 0.23 (0.27 ± 0.18), and a third (half) of all galaxies are maximal disks with f DM(R e) < 0.28. DM fractions correlate inversely with the baryonic surface density, and the low DM fractions can be explained with a flattened, or cored, inner DM density distribution. At z ∼ 2, there is ≈40% less DM mass on average within R e compared to expected values based on cosmological stellar-mass-halo-mass relations. The DM deficit is more evident at high star formation rate surface densities (≳2.5 M yr−1 kpc2) and galaxies with massive bulges (≥1010 M ). A combination of stellar or active galactic nucleus feedback, and/or heating due to dynamical friction, may drive the DM from cuspy into cored mass distributions, pointing to an efficient buildup of massive bulges and central black holes at z ∼ 2 SFGs.

Original languageEnglish
Article number78
JournalAstrophysical Journal
Volume944
Issue number1
DOIs
StatePublished - 1 Feb 2023

Funding

FundersFunder number
Center for Computational Astrophysics
University of Minnesota
National Science Foundation
National Astronomical Observatory of Japan
INSU
Ministry of Science and Technology, Taiwan
Universidad de Concepción
Ohio State University
Arizona university system
SINFONI
Max-Planck-Gesellschaft
Kavli Foundation
ASIAA
Australian Research Council Center of Excellence
Associated Universities
National Institutes of Natural Sciences
Flatiron Institute
University of Notre Dame
Southern Hemisphere
University of Virginia
Astrophysical Institute Potsdam, and Heidelberg University
Australian Diabetes Society
Isaac Newton Trust
DFG Cluster of Excellence
National Radio Astronomy Observatory
SINS
Istituto Nazionale di Astrofisica
National Research Council Canada
Korea Astronomy and Space Science Institute
European School of Oncology075.A-0466, 091.A-0126, 076.A-0527, 095.A-0047, 096.A-0025, 088.A-0209, 097.A-0028, 094.A-0568, 100.A-0361, 098.A-0045, 088.A-0202, 078.A-0600, 092.A-0082, 099.B-0275, 079.A-0341, 101.A-0022, 082.A-0396, 080.A-0330, 081.A-0672, 102.B-0087, 093.A-0110, 090.A-0516, 093.A-0233, 093.A-0079, 080.A-0635, 080.A-0339, 094.A-0217, 102.B-0062, 097.A-0353, 099.A-0013, 183.A-0781, 100.A-0039, 097.B-0065, 092.A-0091
Australian Research CouncilCE170100013
Deutsche ForschungsgemeinschaftSTE/1869-2 GE 625/17-1, EXC-2094-390783311
JAO2016.1.00406, 2019.1.01362, 2019.1.00640
UK Research and Innovation54522
Millenium NucleusNCN19058
Agencia Nacional de Investigación y DesarrolloFB210003, ACE210002
Mathematics and Science Division of the Simons FoundationISF 861/20, DIP 030-9111
Centre National de la Recherche Scientifique2013.1.00952

    Fingerprint

    Dive into the research topics of 'RC100: Rotation Curves of 100 Massive Star-forming Galaxies at z = 0.6-2.5 Reveal Little Dark Matter on Galactic Scales'. Together they form a unique fingerprint.

    Cite this