Rateless space-time coding

Uri Erez*, G. W. Wornell, Mitchell D. Trott

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

15 Scopus citations

Abstract

Rateless codes are good codes of infinite length that have the property that prefixes of such codes are themselves good codes. This makes them attractive for applications in which the channel quality is uncertain, where systems transmit as much of a codeword as necessary for decoding to be possible. In particular, rateless codes are potentially attractive for wireless communication. In a recent work, a rateless coding scheme was proposed for the AWGN channel, based on layering, repetition and random dithering. We extend this scheme to multiple-input single-output (MISO) Gaussian channels. We show that the rate loss associated with orthogonal design space-time codes may be alleviated by layering and dithering, very similar to the rateless approach for the AWGN channel. We then combine the two schemes and arrive at a close-to-capacity rateless code for MISO channels. The required complexity depends on the fraction of capacity that is targeted, is linear in the capacity of the channel and does not depend on the number of transmit antennas. Furthermore, the coding scheme uses only one base AWGN code.

Original languageEnglish
Title of host publicationProceedings of the 2005 IEEE International Symposium on Information Theory, ISIT 05
Pages1937-1941
Number of pages5
DOIs
StatePublished - 2005
Externally publishedYes
Event2005 IEEE International Symposium on Information Theory, ISIT 05 - Adelaide, Australia
Duration: 4 Sep 20059 Sep 2005

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2005
ISSN (Print)2157-8099

Conference

Conference2005 IEEE International Symposium on Information Theory, ISIT 05
Country/TerritoryAustralia
CityAdelaide
Period4/09/059/09/05

Fingerprint

Dive into the research topics of 'Rateless space-time coding'. Together they form a unique fingerprint.

Cite this