Rapid approximate aggregation with distribution-sensitive interval guarantees

Stephen Macke, Maryam Aliakbarpour, Ilias Diakonikolas, Aditya Parameswaran, Ronitt Rubinfeld

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Aggregating data is fundamental to data analytics, data exploration, and OLAP. Approximate query processing (AQP) techniques are often used to accelerate computation of aggregates using samples, for which confidence intervals (CIs) are widely used to quantify the associated error. CIs used in practice fall into two categories: techniques that are tight but not correct, i.e., they yield tight intervals but only offer asymptoticguarantees, makingthem unreliable, or techniques that are correct but not tight, i.e., they offer rigorous guarantees, but are overly conservative, leading to confidence intervals that are too loose to be useful. In this paper, we develop a CI technique that is both correct and tighter than traditional approaches. Starting from conservative CIs, we identify two issues they often face: pessimistic mass allocation (PMA) and phantom outlier sensitivity (PHOS). By developing a novel range-trimming technique for eliminating PHOS and pairing it with known CI techniques without PMA, we develop a technique for computing CIs with strong guarantees that requires fewer samples for the same width. We implement our techniques underneath a sampling-optimized in-memory column store and show how they accelerate queries involving aggregates on real datasets with typical speedups on the order of 10× over both traditional AQP-with-guarantees and exact methods, all while obeying accuracy constraints.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE 37th International Conference on Data Engineering, ICDE 2021
PublisherIEEE Computer Society
Pages1703-1714
Number of pages12
ISBN (Electronic)9781728191843
DOIs
StatePublished - Apr 2021
Externally publishedYes
Event37th IEEE International Conference on Data Engineering, ICDE 2021 - Virtual, Chania, Greece
Duration: 19 Apr 202122 Apr 2021

Publication series

NameProceedings - International Conference on Data Engineering
Volume2021-April
ISSN (Print)1084-4627

Conference

Conference37th IEEE International Conference on Data Engineering, ICDE 2021
Country/TerritoryGreece
CityVirtual, Chania
Period19/04/2122/04/21

Keywords

  • Approximate query processing
  • Aqp
  • Olap

Fingerprint

Dive into the research topics of 'Rapid approximate aggregation with distribution-sensitive interval guarantees'. Together they form a unique fingerprint.

Cite this