TY - GEN
T1 - Rapid approximate aggregation with distribution-sensitive interval guarantees
AU - Macke, Stephen
AU - Aliakbarpour, Maryam
AU - Diakonikolas, Ilias
AU - Parameswaran, Aditya
AU - Rubinfeld, Ronitt
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/4
Y1 - 2021/4
N2 - Aggregating data is fundamental to data analytics, data exploration, and OLAP. Approximate query processing (AQP) techniques are often used to accelerate computation of aggregates using samples, for which confidence intervals (CIs) are widely used to quantify the associated error. CIs used in practice fall into two categories: techniques that are tight but not correct, i.e., they yield tight intervals but only offer asymptoticguarantees, makingthem unreliable, or techniques that are correct but not tight, i.e., they offer rigorous guarantees, but are overly conservative, leading to confidence intervals that are too loose to be useful. In this paper, we develop a CI technique that is both correct and tighter than traditional approaches. Starting from conservative CIs, we identify two issues they often face: pessimistic mass allocation (PMA) and phantom outlier sensitivity (PHOS). By developing a novel range-trimming technique for eliminating PHOS and pairing it with known CI techniques without PMA, we develop a technique for computing CIs with strong guarantees that requires fewer samples for the same width. We implement our techniques underneath a sampling-optimized in-memory column store and show how they accelerate queries involving aggregates on real datasets with typical speedups on the order of 10× over both traditional AQP-with-guarantees and exact methods, all while obeying accuracy constraints.
AB - Aggregating data is fundamental to data analytics, data exploration, and OLAP. Approximate query processing (AQP) techniques are often used to accelerate computation of aggregates using samples, for which confidence intervals (CIs) are widely used to quantify the associated error. CIs used in practice fall into two categories: techniques that are tight but not correct, i.e., they yield tight intervals but only offer asymptoticguarantees, makingthem unreliable, or techniques that are correct but not tight, i.e., they offer rigorous guarantees, but are overly conservative, leading to confidence intervals that are too loose to be useful. In this paper, we develop a CI technique that is both correct and tighter than traditional approaches. Starting from conservative CIs, we identify two issues they often face: pessimistic mass allocation (PMA) and phantom outlier sensitivity (PHOS). By developing a novel range-trimming technique for eliminating PHOS and pairing it with known CI techniques without PMA, we develop a technique for computing CIs with strong guarantees that requires fewer samples for the same width. We implement our techniques underneath a sampling-optimized in-memory column store and show how they accelerate queries involving aggregates on real datasets with typical speedups on the order of 10× over both traditional AQP-with-guarantees and exact methods, all while obeying accuracy constraints.
KW - Approximate query processing
KW - Aqp
KW - Olap
UR - http://www.scopus.com/inward/record.url?scp=85112865238&partnerID=8YFLogxK
U2 - 10.1109/ICDE51399.2021.00150
DO - 10.1109/ICDE51399.2021.00150
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85112865238
T3 - Proceedings - International Conference on Data Engineering
SP - 1703
EP - 1714
BT - Proceedings - 2021 IEEE 37th International Conference on Data Engineering, ICDE 2021
PB - IEEE Computer Society
T2 - 37th IEEE International Conference on Data Engineering, ICDE 2021
Y2 - 19 April 2021 through 22 April 2021
ER -