Ranolazine for Congenital Long-QT Syndrome Type III

Ehud Chorin*, Dan Hu, Charles Antzelevitch, Aviram Hochstadt, Luiz Belardinelli, David Zeltser, Hector Barajas-Martinez, Uri Rozovski, Raphael Rosso, Arnon Adler, Jesaia Benhorin, Sami Viskin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


Background - The basic defect in long-QT syndrome type III (LQT3) is an excessive inflow of sodium current during phase 3 of the action potential caused by mutations in the SCN5A gene. Most sodium channel blockers reduce the early (peak) and late components of the sodium current (I Na and I NaL), but ranolazine preferentially reduces I NaL. We, therefore, evaluated the effects of ranolazine in LQT3 caused by the D1790G mutation in SCN5A. Methods and Results - We performed an experimental study of ranolazine in TSA201 cells expressing the D1790G mutation. We then performed a long-term clinical evaluation of ranolazine in LQT3 patients carrying the D1790G mutation. In the experimental study, I NaL was significantly higher in D1790G than in wild-type channels expressed in the TSA201 cells. Ranolazine exerted a concentration-dependent block of I NaL of the SCN5A-D1790G channel without reducing peak I Na significantly. In the clinical study, among 8 patients with LQT3 and confirmed D1790G mutation, ranolazine had no effects on the sinus rate or QRS width but shortened the QTc from 509±41 to 451±26 ms, a mean decrease of 56±52 ms (10.6%; P=0.012). The QT-shortening effect of ranolazine remained effective throughout the entire study period of 22.8±12.8 months. Ranolazine reduced the QTc at all heart rates but less so during extreme nocturnal bradycardia. A type I Brugada ECG was never noticed. Conclusions - Ranolazine blocks I NaL in experimental models of LQT3 harboring the SCN5A-D1790G mutation and shortened the QT interval of LQT3 patients. Clinical Trial Registration - URL: https://clinicaltrials.gov; Unique identifier: NCT01728025.

Original languageEnglish
Article numbere004370
JournalCirculation: Arrhythmia and Electrophysiology
Issue number10
StatePublished - 1 Oct 2016


FundersFunder number
National Institutes of HealthHL47678
Gilead Sciences


    • action potential
    • bradycardia
    • long-QT syndrome
    • ranolazine
    • torsade de pointes


    Dive into the research topics of 'Ranolazine for Congenital Long-QT Syndrome Type III'. Together they form a unique fingerprint.

    Cite this