TY - JOUR
T1 - Random Gegenbauer Features for Scalable Kernel Methods
AU - Han, Insu
AU - Zandieh, Amir
AU - Avron, Haim
N1 - Publisher Copyright:
Copyright © 2022 by the author(s)
PY - 2022
Y1 - 2022
N2 - We propose efficient random features for approximating a new and rich class of kernel functions that we refer to as Generalized Zonal Kernels (GZK). Our proposed GZK family, generalizes the zonal kernels (i.e., dot-product kernels on the unit sphere) by introducing radial factors in the Gegenbauer series expansion of these kernel functions. The GZK class of kernels includes a wide range of ubiquitous kernel functions such as the entirety of dot-product kernels as well as the Gaussian and the recently introduced Neural Tangent kernels. Interestingly, by exploiting the reproducing property of the Gegenbauer (Zonal) Harmonics, we can construct efficient random features for the GZK family based on randomly oriented Gegenbauer harmonics. We prove subspace embedding guarantees for our Gegenbauer features which ensures that our features can be used for approximately solving learning problems such as kernel k-means clustering, kernel ridge regression, etc. Empirical results show that our proposed features outperform recent kernel approximation methods.
AB - We propose efficient random features for approximating a new and rich class of kernel functions that we refer to as Generalized Zonal Kernels (GZK). Our proposed GZK family, generalizes the zonal kernels (i.e., dot-product kernels on the unit sphere) by introducing radial factors in the Gegenbauer series expansion of these kernel functions. The GZK class of kernels includes a wide range of ubiquitous kernel functions such as the entirety of dot-product kernels as well as the Gaussian and the recently introduced Neural Tangent kernels. Interestingly, by exploiting the reproducing property of the Gegenbauer (Zonal) Harmonics, we can construct efficient random features for the GZK family based on randomly oriented Gegenbauer harmonics. We prove subspace embedding guarantees for our Gegenbauer features which ensures that our features can be used for approximately solving learning problems such as kernel k-means clustering, kernel ridge regression, etc. Empirical results show that our proposed features outperform recent kernel approximation methods.
UR - http://www.scopus.com/inward/record.url?scp=85163061904&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.conferencearticle???
AN - SCOPUS:85163061904
SN - 2640-3498
VL - 162
SP - 8330
EP - 8358
JO - Proceedings of Machine Learning Research
JF - Proceedings of Machine Learning Research
T2 - 39th International Conference on Machine Learning, ICML 2022
Y2 - 17 July 2022 through 23 July 2022
ER -