Rain Estimation Over a Region Using Cyclegan

Sergey Timinsky*, Hai Victor Habi, Jonatan Ostrometzky

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In the last couple of years, supervised machine learning (ML) methods have shown state-of-the-art results for near-ground rain estimation. Information is usually obtained from two kinds of sensors - rain gauges, which measure rain rate, and commercial microwave links (CMLs) which measure attenuation. These data sources are paired to create a dataset on which a model is trained. The arising problem of such methods of training is in the need for the datasets to be constructed with a CML-rain gauge pairing relation. In this paper, we propose a novel approach for rain estimation using a training method that does not require a matching between a CML and a rain gauge. Our goal is to infer the relation between CML measurements to rain rate values, with a data-driven approach using an unpaired dataset. We achieve this by inducing two cycle-consistency losses that capture the intuition that if we translate from attenuation measurements to rain rate observations and back again - we should arrive at where we started. Moreover, we learn two mapping functions translating between A (attenuation) and R (rain-rate), denoted by $G: \mathcal{A} \rightarrow \mathcal{R}$ and $F: \mathcal{R} \rightarrow \mathcal{A}$. No information is provided as to which sample in, $\mathcal{A}$ matches which sample in $\mathcal{R}$. We demonstrate our results using estimated accumulated rain predictions and validate them with a nearby rain gauge station.

Original languageEnglish
Title of host publicationICASSPW 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350302615
DOIs
StatePublished - 2023
Event2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, ICASSPW 2023 - Rhodes Island, Greece
Duration: 4 Jun 202310 Jun 2023

Publication series

NameICASSPW 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, Proceedings

Conference

Conference2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, ICASSPW 2023
Country/TerritoryGreece
CityRhodes Island
Period4/06/2310/06/23

Funding

FundersFunder number
Tel Aviv University
Koninklijk Nederlands Meteorologisch Instituut

    Keywords

    • Commercial Microwave Links (CMLs)
    • Cycle consistency
    • Generative Adversarial Networks
    • Rain Estimation

    Fingerprint

    Dive into the research topics of 'Rain Estimation Over a Region Using Cyclegan'. Together they form a unique fingerprint.

    Cite this