TY - JOUR
T1 - Quantitative proteomics of rat livers shows that unrestricted feeding is stressful for proteostasis with implications on life span
AU - Gat-Yablonski, Galia
AU - Finka, Andrija
AU - Pinto, Galit
AU - Quadroni, Manfredo
AU - Shtaif, Biana
AU - Goloubinoff, Pierre
N1 - Funding Information:
Research was financed by the Swiss National Science Foundation Grant 140512/1 to PG.
PY - 2016
Y1 - 2016
N2 - Studies in young mammals on the molecular effects of food restriction leading to prolong adult life are scares. Here, we used high-throughput quantitative proteomic analysis of whole rat livers to address the molecular basis for growth arrest and the apparent life-prolonging phenotype of the food restriction regimen. Over 1800 common proteins were significantly quantified in livers of ad libitum, restriction- and re-fed rats, which summed up into 92% of the total protein mass of the cells. Compared to restriction, ad libitum cells contained significantly less mitochondrial catabolic enzymes and more cytosolic and ER HSP90 and HSP70 chaperones, which are hallmarks of heat- and chemically-stressed tissues. Following re-feeding, levels of HSPs nearly reached ad libitum levels. The quantitative and qualitative protein values indicated that the restriction regimen was a least stressful condition that used minimal amounts of HSP-chaperones to maintain optimal protein homeostasis and sustain optimal life span. In contrast, the elevated levels of HSP-chaperones in ad libitum tissues were characteristic of a chronic stress, which in the long term could lead to early aging and shorter life span.
AB - Studies in young mammals on the molecular effects of food restriction leading to prolong adult life are scares. Here, we used high-throughput quantitative proteomic analysis of whole rat livers to address the molecular basis for growth arrest and the apparent life-prolonging phenotype of the food restriction regimen. Over 1800 common proteins were significantly quantified in livers of ad libitum, restriction- and re-fed rats, which summed up into 92% of the total protein mass of the cells. Compared to restriction, ad libitum cells contained significantly less mitochondrial catabolic enzymes and more cytosolic and ER HSP90 and HSP70 chaperones, which are hallmarks of heat- and chemically-stressed tissues. Following re-feeding, levels of HSPs nearly reached ad libitum levels. The quantitative and qualitative protein values indicated that the restriction regimen was a least stressful condition that used minimal amounts of HSP-chaperones to maintain optimal protein homeostasis and sustain optimal life span. In contrast, the elevated levels of HSP-chaperones in ad libitum tissues were characteristic of a chronic stress, which in the long term could lead to early aging and shorter life span.
KW - Aging
KW - Catch up growth
KW - Food restriction
KW - Heat shock proteins
KW - Mitochondria
UR - http://www.scopus.com/inward/record.url?scp=84987862402&partnerID=8YFLogxK
U2 - 10.18632/aging.101009
DO - 10.18632/aging.101009
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 27508340
AN - SCOPUS:84987862402
SN - 1945-4589
VL - 8
SP - 1735
EP - 1758
JO - Aging
JF - Aging
IS - 8
ER -