TY - JOUR
T1 - Quantification of the Spectral Variability of Ore-Bearing Granodiorite under Supervised and Semisupervised Conditions
T2 - An Upscaling Approach
AU - Ogen, Yaron
AU - Denk, Michael
AU - Glaesser, Cornelia
AU - Eichstaedt, Holger
AU - Kahnt, Rene
AU - Loeser, Ralf
AU - Suppes, Rudolf
AU - Chimeddorj, Munkhjargal
AU - Tsedenbaljir, Tugsbuyan
AU - Alyeksandr, Undrakhtamir
AU - Oyunbuyan, Tsedendamba
N1 - Publisher Copyright:
© 2021 Yaron Ogen et al.
PY - 2021
Y1 - 2021
N2 - Reflectance spectroscopy is a nondestructive, rapid, and easy-to-use technique which can be used to assess the composition of rocks qualitatively or quantitatively. Although it is a powerful tool, it has its limitations especially when it comes to measurements of rocks with a phaneritic texture. The external variability is reflected only in spectroscopy and not in the chemical-mineralogical measurements that are performed on crushed rock in certified laboratories. Hence, the spectral variability of the surface of an uncrushed rock will, in most cases, be higher than the internal chemical-mineralogical variability, which may impair statistical models built on field measurements. For this reason, studying ore-bearing rocks and evaluating their spectral variability in different scales is an important procedure to better understand the factors that may influence the qualitative and quantitative analysis of the rocks. The objectives are to quantify the spectral variability of three types of altered granodiorite using well-established statistical methods with an upscaling approach. With this approach, the samples were measured in the laboratory under supervised ambient conditions and in the field under semisupervised conditions. This study further aims to conclude which statistical method provides the best practical and accurate classification for use in future studies. Our results showed that all statistical methods enable the separation of the rock types, although two types of rocks have exhibited almost identical spectra. Furthermore, the statistical methods that supplied the most significant results for classification purposes were principal component analysis combined with k-nearest neighbor with a classification accuracy for laboratory and field measurements of 68.1% and 100%, respectively.
AB - Reflectance spectroscopy is a nondestructive, rapid, and easy-to-use technique which can be used to assess the composition of rocks qualitatively or quantitatively. Although it is a powerful tool, it has its limitations especially when it comes to measurements of rocks with a phaneritic texture. The external variability is reflected only in spectroscopy and not in the chemical-mineralogical measurements that are performed on crushed rock in certified laboratories. Hence, the spectral variability of the surface of an uncrushed rock will, in most cases, be higher than the internal chemical-mineralogical variability, which may impair statistical models built on field measurements. For this reason, studying ore-bearing rocks and evaluating their spectral variability in different scales is an important procedure to better understand the factors that may influence the qualitative and quantitative analysis of the rocks. The objectives are to quantify the spectral variability of three types of altered granodiorite using well-established statistical methods with an upscaling approach. With this approach, the samples were measured in the laboratory under supervised ambient conditions and in the field under semisupervised conditions. This study further aims to conclude which statistical method provides the best practical and accurate classification for use in future studies. Our results showed that all statistical methods enable the separation of the rock types, although two types of rocks have exhibited almost identical spectra. Furthermore, the statistical methods that supplied the most significant results for classification purposes were principal component analysis combined with k-nearest neighbor with a classification accuracy for laboratory and field measurements of 68.1% and 100%, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85122221440&partnerID=8YFLogxK
U2 - 10.1155/2021/2580827
DO - 10.1155/2021/2580827
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85122221440
SN - 2314-4920
VL - 2021
JO - Journal of Spectroscopy
JF - Journal of Spectroscopy
M1 - 2580827
ER -