Pull-in dynamics of electrostatically actuated bistable micro beam

Slava Krylov*, Nir Dick

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Results of theoretical investigation of the transient dynamics of an initially curved electrostatically actuated clamped-clamped micro beam are presented. A reduced order model of the shallow Euler-Bernoulli arch developed using the Galerkin procedure with eigenmodes of a straight beam as a basis accounts for the distributed electrostatic and inertial loading, fringing electric fields and nonlinear squeeze film damping. Due to the unique combination of mechanical and electrostatic nonlinearities which is intrinsic in micro devices but is not encountered naturally in large-scale structures, the voltage-deflection characteristic of the sufficiently curved beam may have two maxima implying the existence of sequential mechanical (snap-through) and electrostatic (pull-in) instabilities. Phase plane analysis performed for the case of a suddenly applied electrostatic loading along with the simulation results show that critical voltages corresponding to the dynamic snap-through and pull-in instabilities are lower than their static counterparts while the minimal curvature required for the appearance of the dynamic snap-through is higher than in the static case. Clear functional advantages of this kind of structures, namely extended stable deflections and ability to tune the device frequencies in a very large range may result in improved performance of switches, inertial sensors and micromechanical non-volatile memory devices.

Original languageEnglish
Title of host publicationProceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009
Pages635-645
Number of pages11
DOIs
StatePublished - 2009
Event2009 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2009 - San Diego, CA, United States
Duration: 30 Aug 20092 Sep 2009

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume6

Conference

Conference2009 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2009
Country/TerritoryUnited States
CitySan Diego, CA
Period30/08/092/09/09

Fingerprint

Dive into the research topics of 'Pull-in dynamics of electrostatically actuated bistable micro beam'. Together they form a unique fingerprint.

Cite this