TY - GEN
T1 - Public-key Quantum money with a classical bank
AU - Shmueli, Omri
N1 - Publisher Copyright:
© 2022 ACM.
PY - 2022/9/6
Y1 - 2022/9/6
N2 - Quantum money is a main primitive in quantum cryptography, that enables a bank to distribute to parties in the network, called wallets, unclonable quantum banknotes that serve as a medium of exchange between wallets. While quantum money suggests a theoretical solution to some of the fundamental problems in currency systems, it still requires a strong model to be implemented; quantum computation and a quantum communication infrastructure. A central open question in this context is whether we can have a quantum money scheme that uses "minimal quantumness", namely, local quantum computation and only classical communication. Public-key semi-quantum money (Radian and Sattath, AFT 2019) is a quantum money scheme where the algorithm of the bank is completely classical, and quantum banknotes are publicly verifiable on any quantum computer. In particular, such scheme relies on local quantum computation and only classical communication. The only known construction of public-key semi-quantum is based on quantum lightning (Zhandry, EUROCRYPT 2019), which is based on a computational assumption that is now known to be broken. In this work, we construct public-key semi-quantum money, based on quantum-secure indistinguishability obfuscation and the sub-exponential hardness of the Learning With Errors problem. The technical centerpiece of our construction is a new 3-message protocol, where a classical computer can delegate to a quantum computer the generation of a quantum state that is both, unclonable and publicly verifiable.
AB - Quantum money is a main primitive in quantum cryptography, that enables a bank to distribute to parties in the network, called wallets, unclonable quantum banknotes that serve as a medium of exchange between wallets. While quantum money suggests a theoretical solution to some of the fundamental problems in currency systems, it still requires a strong model to be implemented; quantum computation and a quantum communication infrastructure. A central open question in this context is whether we can have a quantum money scheme that uses "minimal quantumness", namely, local quantum computation and only classical communication. Public-key semi-quantum money (Radian and Sattath, AFT 2019) is a quantum money scheme where the algorithm of the bank is completely classical, and quantum banknotes are publicly verifiable on any quantum computer. In particular, such scheme relies on local quantum computation and only classical communication. The only known construction of public-key semi-quantum is based on quantum lightning (Zhandry, EUROCRYPT 2019), which is based on a computational assumption that is now known to be broken. In this work, we construct public-key semi-quantum money, based on quantum-secure indistinguishability obfuscation and the sub-exponential hardness of the Learning With Errors problem. The technical centerpiece of our construction is a new 3-message protocol, where a classical computer can delegate to a quantum computer the generation of a quantum state that is both, unclonable and publicly verifiable.
KW - quantum cryptography
KW - quantum money
UR - http://www.scopus.com/inward/record.url?scp=85132766778&partnerID=8YFLogxK
U2 - 10.1145/3519935.3519952
DO - 10.1145/3519935.3519952
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85132766778
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 790
EP - 803
BT - STOC 2022 - Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing
A2 - Leonardi, Stefano
A2 - Gupta, Anupam
PB - Association for Computing Machinery
T2 - 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022
Y2 - 20 June 2022 through 24 June 2022
ER -