Proton transfer from photoacid to solvent

Boiko Cohen, Jonathan Segal, Dan Huppert*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

We calculated the proton-transfer rate constant from a super photoacid, 5,8-dicyano-2-naphthol (DCN2), to a protic solvent as a function of temperature. Previously, we found that the temperature dependence of the proton-transfer rate constant is explained as a continuous transition from nonadiabatic to solvent-controlled limits. The model we used to calculate the proton-transfer rate constant is based on a diffusive propagation of the solvent configuration along a generalized solvent coordinate from the reactant potential surface toward the crossing point with the product potential Surface. The proton transfer occurs at the crossing point, and the rate is calculated by a sink term placed at the crossing point. The sink term includes the solvent velocity and the Landau-Zener transmission coefficient. Both the diffusion constant and the Landau-Zener transmission coefficient depend on the dielectric relaxation of the solvent. The calculations are compared with the experimental data and an interpolation expression that bridges the nonadiabatic limit and the solvent-controlled limit.

Original languageEnglish
Pages (from-to)7462-7467
Number of pages6
JournalJournal of Physical Chemistry A
Volume106
Issue number32
DOIs
StatePublished - 15 Aug 2002

Fingerprint

Dive into the research topics of 'Proton transfer from photoacid to solvent'. Together they form a unique fingerprint.

Cite this