Proteomic and genomic signatures of repeat instability in cancer and adjacent normal tissues

Erez Persi, Davide Prandi, Yuri I. Wolf, Yair Pozniak, Georgina D. Barnabas, Keren Levanon, Iris Barshack, Christopher Barbieri, Paola Gasperini, Himisha Beltran, Bishoy M. Faltas, Mark A. Rubin, Tamar Geiger, Eugene V. Koonin, Francesca Demichelis, David Horn

Research output: Contribution to journalArticlepeer-review

Abstract

Repetitive sequences are hotspots of evolution at multiple levels. However, due to difficulties involved in their assembly and analysis, the role of repeats in tumor evolution is poorly understood. We developed a rigorous motif-based methodology to quantify variations in the repeat content, beyond microsatellites, in proteomes and genomes directly from proteomic and genomic raw data. This method was applied to a wide range of tumors and normal tissues. We identify high similarity between repeat instability patterns in tumors and their patient-matched adjacent normal tissues. Nonetheless, tumor-specific signatures both in protein expression and in the genome strongly correlate with cancer progression and robustly predict the tumorigenic state. In a patient, the hierarchy of genomic repeat instability signatures accurately reconstructs tumor evolution, with primary tumors differentiated from metastases. We observe an inverse relationship between repeat instability and point mutation load within and across patients independent of other somatic aberrations. Thus, repeat instability is a distinct, transient, and compensatory adaptive mechanism in tumor evolution and a potential signal for early detection.

Original languageEnglish
Pages (from-to)16987-16996
Number of pages10
JournalProceedings of the National Academy of Sciences of the United States of America
Volume116
Issue number34
DOIs
StatePublished - 20 Aug 2019

Keywords

  • Cancer evolution
  • Diagnosis
  • Genome instability
  • Prognosis
  • Repeats

Fingerprint

Dive into the research topics of 'Proteomic and genomic signatures of repeat instability in cancer and adjacent normal tissues'. Together they form a unique fingerprint.

Cite this