Proteomic analysis of necroptotic extracellular vesicles

Inbar Shlomovitz, Ziv Erlich, Gali Arad, Liat Edry-Botzer, Sefi Zargarian, Hadar Cohen, Tal Manko, Yifat Ofir-Birin, Tomer Cooks, Neta Regev-Rudzki, Motti Gerlic*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Necroptosis is a regulated and inflammatory form of cell death. We, and others, have previously reported that necroptotic cells release extracellular vesicles (EVs). We have found that necroptotic EVs are loaded with proteins, including the phosphorylated form of the key necroptosis-executing factor, mixed lineage kinase domain-like kinase (MLKL). However, neither the exact protein composition, nor the impact, of necroptotic EVs have been delineated. To characterize their content, EVs from necroptotic and untreated U937 cells were isolated and analyzed by mass spectrometry-based proteomics. A total of 3337 proteins were identified, sharing a high degree of similarity with exosome proteome databases, and clearly distinguishing necroptotic and control EVs. A total of 352 proteins were significantly upregulated in the necroptotic EVs. Among these were MLKL and caspase-8, as validated by immunoblot. Components of the ESCRTIII machinery and inflammatory signaling were also upregulated in the necroptotic EVs, as well as currently unreported components of vesicle formation and transport, and necroptotic signaling pathways. Moreover, we found that necroptotic EVs can be phagocytosed by macrophages to modulate cytokine and chemokine secretion. Finally, we uncovered that necroptotic EVs contain tumor neoantigens, and are enriched with components of antigen processing and presentation. In summary, our study reveals a new layer of regulation during the early stage of necroptosis, mediated by the secretion of specific EVs that influences the microenvironment and may instigate innate and adaptive immune responses. This study sheds light on new potential players in necroptotic signaling and its related EVs, and uncovers the functional tasks accomplished by the cargo of these necroptotic EVs.

Original languageEnglish
Article number1059
JournalCell Death and Disease
Volume12
Issue number11
DOIs
StatePublished - Nov 2021

Fingerprint

Dive into the research topics of 'Proteomic analysis of necroptotic extracellular vesicles'. Together they form a unique fingerprint.

Cite this