TY - JOUR
T1 - Protection against tauopathy by the drug candidates NAP (Davunetide) and D-SAL
T2 - Biochemical, cellular and behavioral aspects
AU - Shiryaev, Natalia
AU - Pikman, Regina
AU - Giladi, Eliezer
AU - Gozes, Illana
PY - 2011/8
Y1 - 2011/8
N2 - Activity-dependent neuroprotective protein (ADNP) is essential for brain formation and partial deficiency in ADNP results in cognitive deficits coupled with tauopathy and neuronal cell death. Our previous results indicated that a peptide snippet from ADNP, NAPVSIPQ (NAP, generic name, davunetide) can restore in part ADNP deficiencies. NAP interacts with tubulin and this interaction is displaced by the NAP related peptide that is derived from activity-dependent neurotrophic factor (ADNF), SALLRSIPA (SAL) and its all D-amino acid peptide derivative (D-SAL, also known as AL-309). Both NAP and D-SAL were shown to protect neurons against amyloid beta toxicity however the mechanism of protection is still under investigation. In addition, NAP protects against tau hyperphosphorylation associated with ADNP deficiency, in vivo. To investigate whether the mechanism of in vitro neuroprotection relates to the in vivo protection against tauopathy and to draw potential additional parallelism between NAP and D-SAL, we asked if: 1]NAP and D-SAL protect against amyloid beta related tau hyperphosphorylation in vitro; and 2] D-SAL protects against haploinsufficiency in ADNP, inhibiting tauopathy in vivo. Assessment of NAP and D-SAL neuroprotection in primary cortical neuro-glial cultures treated with amyloid beta showed that both peptides reduced toxin-related neuronal damage and protected against tau hyperphosphorylation. In vivo, chronic DSAL administration protected against tau hyperphosphorylation associated with ADNP deficiency (ADNP+/- mice), showing for the first time protection against deficits in odor discrimination and in social recognition. These studies associate neuroprotection in vivo and in vitro and provide a broad base for future drug development based on NAP and D-SAL against multiple neurodegenerative conditions.
AB - Activity-dependent neuroprotective protein (ADNP) is essential for brain formation and partial deficiency in ADNP results in cognitive deficits coupled with tauopathy and neuronal cell death. Our previous results indicated that a peptide snippet from ADNP, NAPVSIPQ (NAP, generic name, davunetide) can restore in part ADNP deficiencies. NAP interacts with tubulin and this interaction is displaced by the NAP related peptide that is derived from activity-dependent neurotrophic factor (ADNF), SALLRSIPA (SAL) and its all D-amino acid peptide derivative (D-SAL, also known as AL-309). Both NAP and D-SAL were shown to protect neurons against amyloid beta toxicity however the mechanism of protection is still under investigation. In addition, NAP protects against tau hyperphosphorylation associated with ADNP deficiency, in vivo. To investigate whether the mechanism of in vitro neuroprotection relates to the in vivo protection against tauopathy and to draw potential additional parallelism between NAP and D-SAL, we asked if: 1]NAP and D-SAL protect against amyloid beta related tau hyperphosphorylation in vitro; and 2] D-SAL protects against haploinsufficiency in ADNP, inhibiting tauopathy in vivo. Assessment of NAP and D-SAL neuroprotection in primary cortical neuro-glial cultures treated with amyloid beta showed that both peptides reduced toxin-related neuronal damage and protected against tau hyperphosphorylation. In vivo, chronic DSAL administration protected against tau hyperphosphorylation associated with ADNP deficiency (ADNP+/- mice), showing for the first time protection against deficits in odor discrimination and in social recognition. These studies associate neuroprotection in vivo and in vitro and provide a broad base for future drug development based on NAP and D-SAL against multiple neurodegenerative conditions.
KW - Adnp
KW - D-sal
KW - Microarray analysis
KW - Mixed neuro-glial cultures
KW - Odor habituation/dishabituation
KW - Social recognition
KW - Tau hyperphosphorylation
UR - http://www.scopus.com/inward/record.url?scp=79958124972&partnerID=8YFLogxK
U2 - 10.2174/138161211797416093
DO - 10.2174/138161211797416093
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:79958124972
SN - 1381-6128
VL - 17
SP - 2603
EP - 2612
JO - Current Pharmaceutical Design
JF - Current Pharmaceutical Design
IS - 25
ER -