TY - JOUR
T1 - Properly Colored Subgraphs and Rainbow Subgraphs in Edge-Colorings with Local Constraints
AU - Alon, Noga
AU - Jiang, Tao
AU - Miller, Zevi
AU - Pritikin, Dan
PY - 2003/12
Y1 - 2003/12
N2 - We consider a canonical Ramsey type problem. An edge-coloring of a graph is called m-good if each color appears at most m times at each vertex. Fixing a graph G and a positive integer m, let f(m, G) denote the smallest n such that every m-good edge-coloring of K n yields a properly edge-colored copy of G, and let g(m, G) denote the smallest n such that every m-good edge-coloring of K n yields a rainbow copy of G. We give bounds on f(m, G) and g(m, G). For complete graphs G = K t we have c 1 mt 2/ln t ≤ f(m, K t) ≤ c 2mt 2, and c′ 1mt 3/ln t ≤ g(m, K t) ≤ c′ 2mt 3/ln t, where c 1, c 2, c′ 1, c′ 2 are absolute constants. We also give bounds on f(m, G) and g(m, G) for general graphs G in terms of degrees in G. In particular, we show that for fixed m and d, and all sufficiently large n compared to m and d, f(m, G) = n for all graphs G with n vertices and maximum degree at most d.
AB - We consider a canonical Ramsey type problem. An edge-coloring of a graph is called m-good if each color appears at most m times at each vertex. Fixing a graph G and a positive integer m, let f(m, G) denote the smallest n such that every m-good edge-coloring of K n yields a properly edge-colored copy of G, and let g(m, G) denote the smallest n such that every m-good edge-coloring of K n yields a rainbow copy of G. We give bounds on f(m, G) and g(m, G). For complete graphs G = K t we have c 1 mt 2/ln t ≤ f(m, K t) ≤ c 2mt 2, and c′ 1mt 3/ln t ≤ g(m, K t) ≤ c′ 2mt 3/ln t, where c 1, c 2, c′ 1, c′ 2 are absolute constants. We also give bounds on f(m, G) and g(m, G) for general graphs G in terms of degrees in G. In particular, we show that for fixed m and d, and all sufficiently large n compared to m and d, f(m, G) = n for all graphs G with n vertices and maximum degree at most d.
UR - http://www.scopus.com/inward/record.url?scp=0344287271&partnerID=8YFLogxK
U2 - 10.1002/rsa.10102
DO - 10.1002/rsa.10102
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0344287271
SN - 1042-9832
VL - 23
SP - 409
EP - 433
JO - Random Structures and Algorithms
JF - Random Structures and Algorithms
IS - 4
ER -