Promoting simultaneous onset of viral gene expression among cells infected with herpes simplex virus-1

Maya Ralph, Marina Bednarchik, Enosh Tomer, Dor Rafael, Sefi Zargarian, Motti Gerlic, Oren Kobiler*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Synchronous viral infection facilitates the study of viral gene expression, viral host interactions, and viral replication processes. However, the protocols for achieving synchronous infections were hardly ever tested in proper temporal resolution at the single-cell level. We set up a fluorescence-based, time lapse microscopy assay to study sources of variability in the timing of gene expression during herpes simplex virus-1 (HSV-1) infection. We found that with the common protocol, the onset of gene expression within different cells can vary by more than 3 h. We showed that simultaneous viral genome entry to the nucleus can be achieved with a derivative of the previously characterized temperature sensitive mutant tsB7, however, this did not improve gene expression synchrony. We found that elevating the temperature in which the infection is done and increasing the multiplicity of infection (MOI) significantly promoted simultaneous onset of viral gene expression among infected cells. Further, elevated temperature result in a decrease in the coefficient of variation (a standardized measure of dispersion) of viral replication compartments (RCs) sizes among cells as well as a slight increment of viral late gene expression synchrony. We conclude that simultaneous viral gene expression can be improved by simple modifications to the infection process and may reduce the effect of single-cell variability on population-based assays.

Original languageEnglish
Article number2152
JournalFrontiers in Microbiology
Issue numberNOV
StatePublished - 1 Nov 2017


  • Biological noise
  • Herpesviruses
  • Single cell
  • Temperature sensitive
  • Timing of infection


Dive into the research topics of 'Promoting simultaneous onset of viral gene expression among cells infected with herpes simplex virus-1'. Together they form a unique fingerprint.

Cite this